79 research outputs found

    Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants

    No full text
    In all eukaryotic cells, a membrane-trafficking system connects the post-Golgi organelles, such as the trans-Golgi network (TGN), endosomes, vacuoles, and the plasma membrane. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. Unlike its roles in animal and yeast cells, the TGN has also been reported to function like early endosomal compartments in plant cells. However, the physiological roles of the TGN functions in plants are not understood. Here, we report a study of the SYP4 group (SYP41, SYP42, and SYP43), which represents the plant orthologs of the Tlg2/syntaxin16 Qa-SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) that localizes on the TGN in yeast and animal cells. The SYP4 group regulates the secretory and vacuolar transport pathways in the post-Golgi network and maintains the morphology of the Golgi apparatus and TGN. Consistent with a secretory role, SYP4 proteins are required for extracellular resistance responses to a fungal pathogen. We also reveal a plant cell-specific higher-order role of the SYP4 group in the protection of chloroplasts from salicylic acid-dependent biotic stress

    Rab protein evolution and the history of the eukaryotic endomembrane system

    Get PDF
    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity

    Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches

    Get PDF
    Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 gkg-1h-1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 minutes of recovery. Daily intakes of 6-10 gkg-1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 gkg-1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 x 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery. Keywords: soccer, nutrition, recovery, polyphenols, omega-3, creatine, fixture, congestio

    Very long chain fatty acids (policosanols) and phytosterols affect plasma lipid levels and cholesterol biosynthesis in hamsters

    No full text
    The aim of the current study was to examine the effects of very long chain fatty acids (VLCFA) alone at 2 dietary levels, or in combination of VLCFA at the lower level with lecithin (LT) or phytosterols (PS), on lipid profiles and cholesterol biosynthesis in hamsters. Seventy-five male Golden Syrian hamsters, weighing 100 to 120 g, were fed a regular rodent chow for 2 weeks before being randomly assigned into 5 groups of 15 animals each fed semisynthetic diets for 4 weeks. Group 1 was given a control diet that contained 0.25% cholesterol and 5% fat with a polyunsaturated to saturated fatty acids ratio of 0.4. Groups 2 to 5 were fed the control diet and given 25 mg/kg BW per day of VLCFA (Licowax) (VLCFA25), 50 mg/kg BW per day of VLCFA (VLCFA50), 25 mg/kg BW per day of VLCFA + 1000 mg/kg BW per day of LT (VLCFA25/LT), and 25 mg/kg BW per day of VLCFA + 1000 mg/kg BW per day of PS (Cholestatin, VLCFA25/PS), respectively. Results showed that HDL-cholesterol (HDL-C) levels were not changed by VLCFA25, although increased by VLCFA50 (P < .05) relative to control. Total cholesterol (T-C) and non-HDL-C levels were not affected by VLCFA25 and VLCFA50 as compared with control. VLCFA25/LT had higher (P < .02) T-C and HDL-C levels than any other treatments and increased (P < .05) liver weight relative to control. In contrast, VLCFA25/PS reduced T-C (P = .0004) and non-HDL-C (P = .007) without effect on HDL-C levels compared with control. Triglyceride levels were not affected by any treatment. Cholesterol biosynthesis rate was higher (P < .05) in animals fed VLCFA25 and VLCFA50 than those fed control or VLCFA25/LT or VLCFA25/PS. Results suggest that PSs can decrease total and non-HDL-C cholesterol, whereas VLCFA may increase HDL-C in hamsters.Peer reviewed: YesNRC publication: N
    corecore