660,482 research outputs found
Big q-Laguerre and q-Meixner polynomials and representations of the algebra U_q(su(1,1))
Diagonalization of a certain operator in irreducible representations of the
positive discrete series of the quantum algebra U_q(su(1,1)) is studied.
Spectrum and eigenfunctions of this operator are found in an explicit form.
These eigenfunctions, when normalized, constitute an orthonormal basis in the
representation space. The initial U_q(su(1,1))-basis and the basis of
eigenfunctions are interrelated by a matrix with entries, expressed in terms of
big q-Laguerre polynomials. The unitarity of this connection matrix leads to an
orthogonal system of functions, which are dual with respect to big q-Laguerre
polynomials. This system of functions consists of two separate sets of
functions, which can be expressed in terms of q-Meixner polynomials
M_n(x;b,c;q) either with positive or negative values of the parameter b. The
orthogonality property of these two sets of functions follows directly from the
unitarity of the connection matrix. As a consequence, one obtains an
orthogonality relation for q-Meixner polynomials M_n(x;b,c;q) with b<0. A
biorthogonal system of functions (with respect to the scalar product in the
representation space) is also derived.Comment: 15 pages, LaTe
Tracing Galaxy Assembly: Tadpole Galaxies in the Hubble Ultra Deep Field
In the Hubble Ultra Deep Field (HUDF) an abundance of galaxies is seen with a
knot at one end plus an extended tail, resembling a tadpole. These "tadpole
galaxies" appear dynamically unrelaxed--presumably in an early merging
state--where tidal interactions likely created the distorted knot-plus-tail
morphology. Here we systematically select tadpole galaxies from the HUDF and
study their properties as a function of their photometric redshifts. In a
companion HUDF variability study, Cohen et al. (2005) revealed a total of 45
variable objects believed to be Active Galactic Nuclei (AGN). Here we show that
this faint AGN sample has no overlap with the tadpole galaxy sample, as
predicted by theoretical work. The tadpole morphology--combined with the lack
of overlap with the variable objects--supports the idea that these galaxies are
in the process of an early-stage merger event, i.e., at a stage that likely
precedes the "turn-on" of any AGN component and the onset of any point-source
variability.Comment: 7 pages, 4 figures. Accepted for publication by Astrophysical Journa
On the polarization properties of the charmed baryon Lambda^+_c in the Lambda^+_c -> p + K^- + pi^+ + pi^0 decay
The polarization properties of the charmed Lambda^+_c baryon are investigated
in weak non-leptonic four-body Lambda^+_c -> p + K^- + pi^+ + pi^0 decay. The
probability of this decay and the angular distribution of the probability are
calculated in the effective quark model with chiral U(3)XU(3) symmetry
incorporating Heavy Quark Effective theory (HQET) and the extended
Nambu-Jona-Lasinio model with a linear realization of chiral U(3)XU(3)
symmetry. The theoretical value of the probability of the decay Lambda^+_c -> p
+ K^- + pi^+ + pi^0 relative to the probability of the decay Lambda^+_c -> p +
K^- + pi^+ does not contain free parameters and fits well experimental data.
The application of the obtained results to the analysis of the polarization of
the Lambda^+_c produced in the processes of photo and hadroproduction is
discussed.Comment: 10 pages, no figures, Late
Superconductivity in iron silicide Lu2Fe3Si5 probed by radiation-induced disordering
Resistivity r(T), Hall coefficient RH(T), superconducting temperature Tc, and
the slope of the upper critical field -dHc2/dT were studied in poly- and
single-crystalline samples of the Fe-based superconductor Lu2Fe3Si5 irradiated
by fast neutrons. Atomic disordering induced by the neutron irradiation leads
to a fast suppression of Tc similarly to the case of doping of Lu2Fe3Si5 with
magnetic (Dy) and non-magnetic (Sc, Y) impurities. The same effect was observed
in a novel FeAs-based superconductor La(O-F)FeAs after irradiation. Such
behavior is accounted for by strong pair breaking that is traceable to
scattering at non-magnetic impurities or radiation defects in unconventional
superconductors. In such superconductors the sign of the order parameter
changes between the different Fermi sheets (s+- model). Some relations that are
specified for the properties of the normal and superconducting states in
high-temperature superconductors are also observed in Lu2Fe3Si5. The first is
the relationship -dHc2/dT ~ Tc, instead of the one expected for dirty
superconductors -dHc2/dT ~ r0. The second is a correlation between the
low-temperature linear coefficient a in the resistivity r = r0 + a1T, which
appears presumably due to the scattering at magnetic fluctuations, and Tc; this
correlation being an evidence of a tight relation between the superconductivity
and magnetism. The data point to an unconventional (non-fononic) mechanism of
superconductivity in Lu2Fe3Si5, and, probably, in some other Fe-based
compounds, which can be fruitfully studied via the radiation-induced
disordering.Comment: 7 pages, 8 figure
Topological Quantum Computing with Only One Mobile Quasiparticle
In a topological quantum computer, universal quantum computation is performed
by dragging quasiparticle excitations of certain two dimensional systems around
each other to form braids of their world lines in 2+1 dimensional space-time.
In this paper we show that any such quantum computation that can be done by
braiding identical quasiparticles can also be done by moving a single
quasiparticle around n-1 other identical quasiparticles whose positions remain
fixed.Comment: 4 pages, 5 figure
Doping - dependent superconducting gap anisotropy in the two-dimensional 10-3-8 pnictide Ca(PtAs)[(FePt)As]
The characteristic features of
Ca(PtAs)[(FePt)As] ("10-3-8")
superconductor are relatively high anisotropy and a clear separation of
superconductivity and structural/magnetic transitions, which allows studying
the superconducting gap without complications due to the coexisting order
parameters. The London penetration depth, measured in underdoped single
crystals of 10-3-8 ( 0.028, 0.041, 0.042, and 0.097), shows behavior
remarkably similar to other Fe-based superconductors, exhibiting robust
power-law, . The exponent decreases from 2.36
( 0.097, close to optimal doping) to 1.7 ( 0.028, a heavily
underdoped composition), suggesting that the superconducting gap becomes more
anisotropic at the dome edge. A similar trend is found in low-anisotropy
superconductors based on BaFeAs ("122"), implying that it is an
intrinsic property of superconductivity in iron pnictides, unrelated to the
coexistence of magnetic order and superconductivity or the anisotropy of the
normal state. Overall this doping dependence is consistent with
pairing competing with intra-band repulsion
Quintom model with O() symmetry
We investigate the quintom model of dark energy in the generalized case where
the corresponding canonical and phantom fields possess O() symmetries.
Assuming exponential potentials we find that this O quintom paradigm
exhibits novel properties comparing to the simple canonical and phantom
scenarios. In particular, we find that the universe cannot result in a
quintessence-type solution with , even in the cases where the phantom
field seems to be irrelevant. On the contrary, there are always late-time
attractors which correspond to accelerating universes with and with a
recent crossing of the phantom divide, and for a very large area of the
parameter space they are the only ones. This is in contrast with the previous
simple-quintom results, where an accelerating universe is a possible late-time
stable solution but it is not guaranteed.Comment: 13 pages, no figur
Emergence of Oscillons in an Expanding Background
We consider a (1+1) dimensional scalar field theory that supports oscillons,
which are localized, oscillatory, stable solutions to nonlinear equations of
motion. We study this theory in an expanding background and show that oscillons
now lose energy, but at a rate that is exponentially small when the expansion
rate is slow. We also show numerically that a universe that starts with
(almost) thermal initial conditions will cool to a final state where a
significant fraction of the energy of the universe -- on the order of 50% -- is
stored in oscillons. If this phenomenon persists in realistic models, oscillons
may have cosmological consequences.Comment: 13 pages, 4 .eps figures, uses RevTeX4; v2: clarified details of
expansion, added reference
Shear Effects in Non-Homogeneous Turbulence
Motivated by recent experimental and numerical results, a simple unifying
picture of intermittency in turbulent shear flows is suggested. Integral
Structure Functions (ISF), taking into account explicitly the shear intensity,
are introduced on phenomenological grounds. ISF can exhibit a universal scaling
behavior, independent of the shear intensity. This picture is in satisfactory
agreement with both experimental and numerical data. Possible extension to
convective turbulence and implication on closure conditions for Large-Eddy
Simulation of non-homogeneous flows are briefly discussed.Comment: 4 pages, 5 figure
- …