research

Doping - dependent superconducting gap anisotropy in the two-dimensional 10-3-8 pnictide Ca10_{10}(Pt3_3As8_8)[(Fe1x_{1-x}Ptx_{x})2_2As2_2]5_5

Abstract

The characteristic features of Ca10_{10}(Pt3_3As8_8)[(Fe1x_{1-x}Ptx_x)2_2As2_2]5_5 ("10-3-8") superconductor are relatively high anisotropy and a clear separation of superconductivity and structural/magnetic transitions, which allows studying the superconducting gap without complications due to the coexisting order parameters. The London penetration depth, measured in underdoped single crystals of 10-3-8 (x=x = 0.028, 0.041, 0.042, and 0.097), shows behavior remarkably similar to other Fe-based superconductors, exhibiting robust power-law, Δλ(T)=ATn\Delta \lambda(T) = A T^n. The exponent nn decreases from 2.36 (x=x = 0.097, close to optimal doping) to 1.7 (x=x = 0.028, a heavily underdoped composition), suggesting that the superconducting gap becomes more anisotropic at the dome edge. A similar trend is found in low-anisotropy superconductors based on BaFe2_2As2_2 ("122"), implying that it is an intrinsic property of superconductivity in iron pnictides, unrelated to the coexistence of magnetic order and superconductivity or the anisotropy of the normal state. Overall this doping dependence is consistent with s±s_{\pm} pairing competing with intra-band repulsion

    Similar works