694 research outputs found
Hysteresis in human binocular fusion: temporalward and nasalward ranges
Fender and Julesz [J. Opt. Soc. Am. 57, 819 (1967)] moved pairs of retinally stabilized images across the temporalward
visual fields and found significant differences between the disparities that elicited fusion and the disparities at
which fusion was lost. They recognized this phenomenon as an example of hysteresis. In the work reported in this
paper, binocular retinally stabilized images of vertical dark bars on white backgrounds were moved into horizontal
disparity in both the nasalward and the temporalward directions. The limits of Panum's fusional area and the
hysteresis demonstrated by these limits were measured for two observers. The following results were obtained: (1)
the nasalward limits of Panum's fusional area and the hysteresis demonstrated by the nasalward limits do not differ
significantly from the temporalward limits and the hysteresis demonstrated by the temporalward limits; (2) the
limits of Panum's fusional area and the hysteresis demonstrated by these limits are not significantly different if one
stimulus moves across each retina or if one stimulus is held still on one retina and the other stimulus is moved across
the other retina; (3) the use of nonstabilized cross hairs for fixation decreases the hysteresis; and (4) the full
hysteresis effect can be elicited with a rate of change of disparity of 2 arcmin/sec
Near-threshold high-order harmonic spectroscopy with aligned molecules
We study high-order harmonic generation in aligned molecules close to the
ionization threshold. Two distinct contributions to the harmonic signal are
observed, which show very different responses to molecular alignment and
ellipticity of the driving field. We perform a classical electron trajectory
analysis, taking into account the significant influence of the Coulomb
potential on the strong-field-driven electron dynamics. The two contributions
are related to primary ionization and excitation processes, offering a deeper
understanding of the origin of high harmonics near the ionization threshold.
This work shows that high harmonic spectroscopy can be extended to the
near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure
Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative
Aerosols are involved in a complex set of processes that operate across many spatial and temporal scales. Understanding these processes, and ensuring their accurate representation in models of transport, radiation transfer, and climate, requires knowledge of aerosol physical, chemical, and optical properties and the distributions of these properties in space and time. To derive aerosol climate forcing, aerosol optical and microphysical properties and their spatial and temporal distributions, and aerosol interactions with clouds, need to be understood. Such data are also required in conjunction with size-resolved chemical composition in order to evaluate chemical transport models and to distinguish natural and anthropogenic forcing. Other basic parameters needed for modeling the radiative influences of aerosols are surface reflectivity and three-dimensional cloud fields. This large suite of parameters mandates an integrated observing and modeling system of commensurate scope. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept, designed to meet this requirement, is motivated by the need to understand climate system sensitivity to changes in atmospheric constituents, to reduce climate model uncertainties, and to analyze diverse collections of data pertaining to aerosols. This paper highlights several challenges resulting from the complexity of the problem. Approaches for dealing with them are offered in the set of companion papers
Aerosol Data Sources and Their Roles within PARAGON
We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal
Designer diatom episomes delivered by bacterial conjugation.
Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research
An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions
Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality
SOXS: a wide band spectrograph to follow up transients
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope
capable to cover the optical and NIR bands, based on the heritage of the
X-Shooter at the ESO-VLT. SOXS will be built and run by an international
consortium, carrying out rapid and longer term Target of Opportunity requests
on a variety of astronomical objects. SOXS will observe all kind of transient
and variable sources from different surveys. These will be a mixture of fast
alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term
alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by
passage of minor bodies). While the focus is on transients and variables, still
there is a wide range of other astrophysical targets and science topics that
will benefit from SOXS. The design foresees a spectrograph with a
Resolution-Slit product ~ 4500, capable of simultaneously observing over the
entire band the complete spectral range from the U- to the H-band. The limiting
magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified
from on-going imaging surveys. Light imaging capabilities in the optical band
(grizy) are also envisaged to allow for multi-band photometry of the faintest
transients. This paper outlines the status of the project, now in Final Design
Phase.Comment: 12 pages, 14 figures, to be published in SPIE Proceedings 1070
- …