1,634 research outputs found

    A fully CNN based fingerprint recognition system

    Get PDF
    In this paper, a fully cellular neural networks (CNN) based fingerprint recognition system is introduced. The system includes a preprocessing phase where the input fingerprint image is enhanced and a recognition phase where the enhanced fingerprint image is matched with the fingerprints in the database. Both preprocessing and recognition phases are realized by means of CNN approaches. A novel application of skeletonization method is used to perform ridgeline thinning which improves the quality of the extracted lines for further processing, and hence increases the overall system performance

    MOCVD growth and optical properties of non-polar (11-20) a-plane GaN on (10-12) r-plane sapphire substrate

    Get PDF
    Cataloged from PDF version of article.Non-polar a-plane GaN film with crystalline quality and anisotropy improvement is grown by use of high temperature AlN/AlGaN buffer, which is directly deposited on r-plane sapphire by pulse flows. Compared to the a-plane GaN grown on AIN buffer, X-ray rocking curve analysis reveals a remarkable reduction in the full width at half maximum, both on-axis and off-axis. Atomic force microscopy image exhibits a fully coalesced pit-free surface morphology with low root-mean-square roughness (similar to 1.5 nm). Photoluminescence is carried out on the a-plane GaN grown on r-plane sapphire. It is found that, at low temperature, the dominant emission at similar to 3.42 eV is composed of two separate peaks with different characteristics, which provide explanations for the controversial attributions of this peak in previous studies. (C) 2010 Elsevier B.V. All rights reserved

    The role of the nature of the noise in the thermal conductance of mechanical systems

    Full text link
    Focussing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role of the L\'evy-It\^o nature of the noise in the thermal conductance. For white noises, we prove that the L\'evy-It\^o composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a non-equilibrium linearly coupled chain, which signals the independence between mechanical and thermodynamical properties. On the other hand, for the non-linearly coupled case, the two types of properties mix and the explicit definition of the noise plays a central role.Comment: 9 pages, 2 figures. To be published in Physical Review

    Metalorganic chemical vapor deposition growth and thermal stability of the AllNN/GaN high electron mobility transistor structure

    Get PDF
    Cataloged from PDF version of article.The AlxIn1-xN barrier high electron mobility transistor (HEMT) structure has been optimized with varied barrier composition and thickness grown by metalorganic chemical vapor deposition. After optimization, a transistor structure comprising a 7 nm thick nearly lattice-matched Al0.83In0.17 N barrier exhibits a sheet electron density of 2.0 x 10(13) cm(-2) with a high electron mobility of 1540 cm(2) V-1 s(-1). AnAl(0.83)In(0.17)N barrier HEMT device with 1 mu m gate length provides a current density of 1.0 A mm(-1) at V-GS = 0 V and an extrinsic transconductance of 242 mS mm(-1), which are remarkably improved compared to that of a conventional Al0.3Ga0.7N barrier HEMT. To investigate the thermal stability of the HEMT epi-structures, post-growth annealing experiments up to 800 degrees C have been applied to Al0.83In0.17N and Al0.3Ga0.7N barrier heterostructures. As expected, the electrical properties of an Al0.83In0.17N barrier HEMT structure showed less stability than that of an Al0.3Ga0.7N barrier HEMT to the thermal annealing. The structural properties of Al0.83In0.17N/GaN also showed more evidence for decomposition than that of the Al0.3Ga0.7N/GaN structure after 800 degrees C post-annealing

    Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface

    Full text link
    We report laser emission from single, stationary, Rhodamine B-doped glycerol/water microdroplets located on a superhydrophobic surface. In the experiments, a pulsed, frequency-doubled Nd:YAG laser operating at 532 nm was used as the excitation source. The microdroplets ranged in diameter from a few to 20 um. Lasing was achieved in the red-shifted portion of the dye emission spectrum with threshold fluences as low as 750 J/cm2. Photobleaching was observed when the microdroplets were pumped above threshold. In certain cases, multimode lasing was also observed and attributed to the simultaneous lasing of two modes belonging to different sets of whispering gallery modes.Comment: to appear in Optics Communication

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    Indium rich InGaN solar cells grown by MOCVD

    Get PDF
    Cataloged from PDF version of article.This study focuses on both epitaxial growths of InxGa1-xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from 8.8 to 7.1 % in Sample A, 15.7-7.1 % in Sample B, and 26.6-15.1 % in Sample C. The current voltage measurements of the solar cell devices were carried out after a standard micro fabrication procedure. Sample B exhibits better performance with a short-circuit current density of 6 mA/cm(2), open-circuit voltage of 0.25 V, fill factor of 39.13 %, and the best efficiency measured under a standard solar simulator with one-sun air mass 1.5 global light sources (100 mW/cm(2)) at room temperature for finished devices was 0.66 %

    Effect of barnacle fouling on ship resistance and powering

    Get PDF
    Predictions of added resistances and effective powers of ships were made for varying barnacle fouling conditions. A series of towing tests were carried out using flat plates covered with artificial barnacles. The tests were designed to allow the examination of the effects of barnacle height and percent coverage on the resistance and effective power of ships. The drag coefficients and roughness function values were evaluated for the flat plates. Roughness effects of the fouling conditions on the ship frictional resistances were predicted. Added resistance diagrams were then plotted using these predictions, and powering penalties of these ships were calculated using the generated diagrams. The results indicate that the effect of barnacle size is significant, since 10% of the coverage of barnacles, which are 5mm in height, causes a similar level of added power requirements as 50% of the coverage of barnacles, which are 1.25 mm in height

    Evolution of the mosaic structure in InGaN layer grown on a thick GaN template and sapphire substrate

    Get PDF
    Cataloged from PDF version of article.The InxGa1-xN epitaxial layers, with indium (x) concentration changes between 0.16 and 1.00 (InN), were grown on GaN template/(0001) Al2O3 substrate by metal organic chemical vapour deposition. The indium content (x), lattice parameters and strain values in the InGaN layers were calculated from the reciprocal lattice mapping around symmetric (0002) and asymmetric (10-15) reflection of the GaN and InGaN layers. The characteristics of mosaic structures, such as lateral and vertical coherence lengths, tilt and twist angle and heterogeneous strain and dislocation densities (edge and screw dislocations) of the InGaN epilayers and GaN template layers were investigated by using high-resolution X-ray diffraction (HR-XRD) measurements. With a combination of Williamson-Hall (W-H) measurements and the fitting of twist angles, it was found that the indium content in the InGaN epilayers did not strongly effect the mosaic structures' parameters, lateral and vertical coherence lengths, tilt and twist angle, or heterogeneous strain of the InGaN epilayers

    Finite-size scaling for non-linear rheology of fluids confined in a small space

    Full text link
    We perform molecular dynamics simulations in order to examine the rheological transition of fluids confined in a small space. By performing finite-size scaling analysis, we demonstrate that this rheological transition results from the competition between the system size and the length scale of cooperative particle motion.Comment: 4pages, 8 figure
    corecore