242 research outputs found

    Confinement effects in a guided-wave interferometer with millimeter-scale arm separation

    Full text link
    Guided-wave atom interferometers measure interference effects using atoms held in a confining potential. In one common implementation, the confinement is primarily two-dimensional, and the atoms move along the nearly free dimension under the influence of an off-resonant standing wave laser beam. In this configuration, residual confinement along the nominally free axis can introduce a phase gradient to the atoms that limits the arm separation of the interferometer. We experimentally investigate this effect in detail, and show that it can be alleviated by having the atoms undergo a more symmetric motion in the guide. This can be achieved by either using additional laser pulses or by allowing the atoms to freely oscillate in the potential. Using these techniques, we demonstrate interferometer measurement times up to 72 ms and arm separations up to 0.42 mm with a well controlled phase, or times of 0.91 s and separations of 1.7 mm with an uncontrolled phase.Comment: 14 pages, 6 figure

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Measurement of the ac Stark shift with a guided matter-wave interferometer

    Full text link
    We demonstrate the effectiveness of a guided-wave Bose-Einstein condensate interferometer for practical measurements. Taking advantage of the large arm separations obtainable in our interferometer, the energy levels of the 87Rb atoms in one arm of the interferometer are shifted by a calibrated laser beam. The resulting phase shifts are used to determine the ac polarizability at a range of frequencies near and at the atomic resonance. The measured values are in good agreement with theoretical expectations. However, we observe a broadening of the transition near the resonance, an indication of collective light scattering effects. This nonlinearity may prove useful for the production and control of squeezed quantum states.Comment: 5 pages, three figure

    Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures

    Full text link
    Results of numerical simulations of a recently derived most general dissipative-dispersive PDE describing evolution of a film flowing down an inclined plane are presented. They indicate that a novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required sufficiently viscous liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations available upon or reques

    Coexisting Pulses in a Model for Binary-Mixture Convection

    Full text link
    We address the striking coexistence of localized waves (`pulses') of different lengths which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded

    Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close to the convective-absolute instability

    Full text link
    The influence of small additive noise on structure formation near a forwards and near an inverted bifurcation as described by a cubic and quintic Ginzburg Landau amplitude equation, respectively, is studied numerically for group velocities in the vicinity of the convective-absolute instability where the deterministic front dynamics would empty the system.Comment: 16 pages, 7 Postscript figure

    Worm Structure in Modified Swift-Hohenberg Equation for Electroconvection

    Full text link
    A theoretical model for studying pattern formation in electroconvection is proposed in the form of a modified Swift-Hohenberg equation. A localized state is found in two dimension, in agreement with the experimentally observed ``worm" state. The corresponding one dimensional model is also studied, and a novel stationary localized state due to nonadiabatic effect is found. The existence of the 1D localized state is shown to be responsible for the formation of the two dimensional ``worm" state in our model
    corecore