3,178 research outputs found

    Irreducible Modules of Finite Dimensional Quantum Algebras of type A at Roots of Unity

    Full text link
    Specializing properly the parameters contained in the maximal cyclic representation of the non-restricted A-type quantum algebra at roots of unity, we find the unique primitive vector in it. We show that the submodule generated by the primitive vector can be identified with an irreducble highest weight module of the finite dimensional A-type quantum algebra which is defined as the subalgebra of the restricted quantum algebra at roots of unity.Comment: LaTeX(2e), 17 page

    A Construction of Solutions to Reflection Equations for Interaction-Round-a-Face Models

    Get PDF
    We present a procedure in which known solutions to reflection equations for interaction-round-a-face lattice models are used to construct new solutions. The procedure is particularly well-suited to models which have a known fusion hierarchy and which are based on graphs containing a node of valency 11. Among such models are the Andrews-Baxter-Forrester models, for which we construct reflection equation solutions for fixed and free boundary conditions.Comment: 9 pages, LaTe

    Classical Many-particle Clusters in Two Dimensions

    Full text link
    We report on a study of a classical, finite system of confined particles in two dimensions with a two-body repulsive interaction. We first develop a simple analytical method to obtain equilibrium configurations and energies for few particles. When the confinement is harmonic, we prove that the first transition from a single shell occurs when the number of particles changes from five to six. The shell structure in the case of an arbitrary number of particles is shown to be independent of the strength of the interaction but dependent only on its functional form. It is also independent of the magnetic field strength when included. We further study the effect of the functional form of the confinement potential on the shell structure. Finally we report some interesting results when a three-body interaction is included, albeit in a particular model.Comment: Minor corrections, a few references added. To appear in J. Phys: Condensed Matte

    Geometric and combinatorial realizations of crystal graphs

    Full text link
    For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For affine type A, we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.Comment: 34 pages, 17 figures; v2: minor typos corrected; v3: corrections to section 8; v4: minor typos correcte

    Vertex Operator Representation of the Soliton Tau Functions in the An(1)A_n^{(1)} Toda Models by Dressing Transformations

    Get PDF
    We study the relation between the group-algebraic approach and the dressing symmetry one to the soliton solutions of the An(1)A_n^{(1)} Toda field theory in 1+1 dimensions. Originally solitons in the affine Toda models has been found by Olive, Turok and Underwood. Single solitons are created by exponentials of elements which ad-diagonalize the principal Heisenberg subalgebra. Alternatively Babelon and Bernard exploited the dressing symmetry to reproduce the known expressions for the fundamental tau functions in the sine-Gordon model. In this paper we show the equivalence between these two methods to construct solitons in the An(n)A_n^{(n)} Toda models.Comment: 35 pages, LaTe

    Basic Representations of A_{2l}^(2) and D_{l+1}^(2) and the Polynomial Solutions to the Reduced BKP Hierarchies

    Full text link
    Basic representations of A_{2l}^(2) and D_{l+1}^(2) are studied. The weight vectors are represented in terms of Schur's QQ-functions. The method to get the polynomial solutions to the reduced BKP hierarchies is shown to be equivalent to a certain rule in Maya game.Comment: January 1994, 11 page

    Homogeneous Loop Quantum Cosmology: The Role of the Spin Connection

    Full text link
    Homogeneous cosmological models with non-vanishing intrinsic curvature require a special treatment when they are quantized with loop quantum cosmological methods. Guidance from the full theory which is lost in this context can be replaced by two criteria for an acceptable quantization, admissibility of a continuum approximation and local stability. A quantization of the corresponding Hamiltonian constraints is presented and shown to lead to a locally stable, non-singular evolution compatible with almost classical behavior at large volume. As an application, the Bianchi IX model and its modified behavior close to its classical singularity is explored.Comment: revtex4, 36 pages, 10 figures. In version 2 the introduction is expanded, section III E is added and a paragraph on relevance of results is added in the conclusions. Refs updated, results unchanged. To appear in Class. Quant. Gravit

    Roots of Unity: Representations of Quantum Groups

    Get PDF
    Representations of Quantum Groups U_q (g_n), g_n any semi simple Lie algebra of rank n, are constructed from arbitrary representations of rank n-1 quantum groups for q a root of unity. Representations which have the maximal dimension and number of free parameters for irreducible representations arise as special cases.Comment: 23 page

    Direct observation of the multiple spin gap excitations in two-dimensional dimer system SrCu2(BO3)2

    Full text link
    Various spin gap excitations have been observed in the two-dimensional dimer system SrCu_2(BO_3)_2 by means of submillimeter wave ESR. The zero-field energy gap of the lowest spin gap excitation shows a splitting into two triplet modes and the energy splitting clearly depends on the magnetic field orientation when a field is rotated in the {\mib {ac}}-plane. A zero-field splitting is also found between the S(_z)=+1 and S(_z)=-1 branches of each triplet. These behaviors are qualitatively explained by considering the anisotropic exchange coupling of inter-dimer and intra-dimer, respectively. The averaged value of the lowest spin gap energy is determined to be 722 \pm 2 GHz(34.7 K). We have also found the second spin gap excitation at 1140 GHz(54.7 K), which indicates that the inter-dimer coupling is significantly strong. Besides these modes, a number of gapped ESR absorption are found and we propose that these multiple magnetic excitations are caused by the localized nature of the excited state in the present system.Comment: 4pages 4figure
    corecore