26,861 research outputs found
Optical and Infrared Spectroscopy
Contains report on one research project.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Air Force (ESD Contract AF 19(628)-6066)M. I. T. Sloan Fund for Basic Researc
Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED
We study the part of the renormalized, cutoff QED light-front Hamiltonian
that does not change particle number. The Hamiltonian contains interactions
that must be treated in second-order bound state perturbation theory to obtain
hyperfine structure. We show that a simple unitary transformation leads
directly to the familiar Breit-Fermi spin-spin and tensor interactions, which
can be treated in degenerate first-order bound-state perturbation theory, thus
simplifying analytic light-front QED calculations. To the order in momenta we
need to consider, this transformation is equivalent to a Melosh rotation. We
also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil
Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis
Indicators for comparing performance of irrigated agricultural systems
Irrigated farming / Irrigation systems / Indicators / Performance indexes / Financing / Crop production / Water demand / Water requirements / Prices
Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina:phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers
In the developing mouse retina degenerating neurons can be observed initially in the ganglion cell layer followed by a phase of cell death in the inner nuclear layer. Using an immunohistochemical method to localize the mouse macrophage specific antigen F4/80, we show that macrophages migrate from the vascular supply overlying the developing retina and phagocytose the degenerating neurons. The macrophages subsequently differentiate to become the microglia of the retina and form a regularly spaced distribution across the retina in the inner and outer plexiform layers. These experiments provide strong evidence for the mesodermal origin of central nervous system microglia.</p
Initial bound state studies in light-front QCD
We present the first numerical QCD bound state calculation based on a
renormalization group-improved light-front Hamiltonian formalism. The QCD
Hamiltonian is determined to second order in the coupling, and it includes
two-body confining interactions. We make a momentum expansion, obtaining an
equal-time-like Schrodinger equation. This is solved for quark-antiquark
constituent states, and we obtain a set of self-consistent parameters by
fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include
The importance of XY anisotropy in Sr2IrO4 revealed by magnetic critical scattering experiments
The magnetic critical scattering in SrIrO has been characterized
using X-ray resonant magnetic scattering (XRMS) both below and above the 3D
antiferromagnetic ordering temperature, T. The order parameter
critical exponent below T is found to be \beta=0.195(4), in the
range of the 2D XYh universality class. Over an extended temperature range
above T, the amplitude and correlation length of the intrinsic
critical fluctuations are well described by the 2D Heisenberg model with XY
anisotropy. This contrasts with an earlier study of the critical scattering
over a more limited range of temperature which found agreement with the theory
of the isotropic 2D Heisenberg quantum antiferromagnet, developed to describe
the critical fluctuations of the conventional Mott insulator LaCuO and
related systems. Our study therefore establishes the importance of XY
anisotropy in the low-energy effective Hamiltonian of SrIrO, the
prototypical spin-orbit Mott insulator.Comment: 6 pages, 4 figure
Self-Organizing Maps Algorithm for Parton Distribution Functions Extraction
We describe a new method to extract parton distribution functions from hard
scattering processes based on Self-Organizing Maps. The extension to a larger,
and more complex class of soft matrix elements, including generalized parton
distributions is also discussed.Comment: 6 pages, 3 figures, to be published in the proceedings of ACAT 2011,
14th International Workshop on Advanced Computing and Analysis Techniques in
Physics Researc
Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization
Hamiltonian light-front field theory can be used to solve for hadron states
in QCD. To this end, a method has been developed for systematic renormalization
of Hamiltonian light-front field theories, with the hope of applying the method
to QCD. It assumed massless particles, so its immediate application to QCD is
limited to gluon states or states where quark masses can be neglected. This
paper builds on the previous work by including particle masses
non-perturbatively, which is necessary for a full treatment of QCD. We show
that several subtle new issues are encountered when including masses
non-perturbatively. The method with masses is algebraically and conceptually
more difficult; however, we focus on how the methods differ. We demonstrate the
method using massive phi^3 theory in 5+1 dimensions, which has important
similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra
disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final
published versio
Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets
Copyright © 2009 American Institute of Physics.Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier–Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.EPSR
- …
