26,861 research outputs found

    Optical and Infrared Spectroscopy

    Get PDF
    Contains report on one research project.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Air Force (ESD Contract AF 19(628)-6066)M. I. T. Sloan Fund for Basic Researc

    Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED

    Get PDF
    We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle number. The Hamiltonian contains interactions that must be treated in second-order bound state perturbation theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state perturbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil

    Indicators for comparing performance of irrigated agricultural systems

    Get PDF
    Irrigated farming / Irrigation systems / Indicators / Performance indexes / Financing / Crop production / Water demand / Water requirements / Prices

    Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina:phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers

    Get PDF
    In the developing mouse retina degenerating neurons can be observed initially in the ganglion cell layer followed by a phase of cell death in the inner nuclear layer. Using an immunohistochemical method to localize the mouse macrophage specific antigen F4/80, we show that macrophages migrate from the vascular supply overlying the developing retina and phagocytose the degenerating neurons. The macrophages subsequently differentiate to become the microglia of the retina and form a regularly spaced distribution across the retina in the inner and outer plexiform layers. These experiments provide strong evidence for the mesodermal origin of central nervous system microglia.</p

    Initial bound state studies in light-front QCD

    Full text link
    We present the first numerical QCD bound state calculation based on a renormalization group-improved light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling, and it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-time-like Schrodinger equation. This is solved for quark-antiquark constituent states, and we obtain a set of self-consistent parameters by fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include

    The importance of XY anisotropy in Sr2IrO4 revealed by magnetic critical scattering experiments

    Get PDF
    The magnetic critical scattering in Sr2_2IrO4_4 has been characterized using X-ray resonant magnetic scattering (XRMS) both below and above the 3D antiferromagnetic ordering temperature, TN_{\text{N}}. The order parameter critical exponent below TN_{\text{N}} is found to be \beta=0.195(4), in the range of the 2D XYh4_4 universality class. Over an extended temperature range above TN_{\text{N}}, the amplitude and correlation length of the intrinsic critical fluctuations are well described by the 2D Heisenberg model with XY anisotropy. This contrasts with an earlier study of the critical scattering over a more limited range of temperature which found agreement with the theory of the isotropic 2D Heisenberg quantum antiferromagnet, developed to describe the critical fluctuations of the conventional Mott insulator La2_2CuO4_4 and related systems. Our study therefore establishes the importance of XY anisotropy in the low-energy effective Hamiltonian of Sr2_2IrO4_4, the prototypical spin-orbit Mott insulator.Comment: 6 pages, 4 figure

    Self-Organizing Maps Algorithm for Parton Distribution Functions Extraction

    Full text link
    We describe a new method to extract parton distribution functions from hard scattering processes based on Self-Organizing Maps. The extension to a larger, and more complex class of soft matrix elements, including generalized parton distributions is also discussed.Comment: 6 pages, 3 figures, to be published in the proceedings of ACAT 2011, 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Researc

    Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization

    Get PDF
    Hamiltonian light-front field theory can be used to solve for hadron states in QCD. To this end, a method has been developed for systematic renormalization of Hamiltonian light-front field theories, with the hope of applying the method to QCD. It assumed massless particles, so its immediate application to QCD is limited to gluon states or states where quark masses can be neglected. This paper builds on the previous work by including particle masses non-perturbatively, which is necessary for a full treatment of QCD. We show that several subtle new issues are encountered when including masses non-perturbatively. The method with masses is algebraically and conceptually more difficult; however, we focus on how the methods differ. We demonstrate the method using massive phi^3 theory in 5+1 dimensions, which has important similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final published versio

    Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets

    Get PDF
    Copyright © 2009 American Institute of Physics.Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier–Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.EPSR
    corecore