62 research outputs found

    Combinatorial Voter Control in Elections

    Get PDF
    Voter control problems model situations such as an external agent trying to affect the result of an election by adding voters, for example by convincing some voters to vote who would otherwise not attend the election. Traditionally, voters are added one at a time, with the goal of making a distinguished alternative win by adding a minimum number of voters. In this paper, we initiate the study of combinatorial variants of control by adding voters: In our setting, when we choose to add a voter~vv, we also have to add a whole bundle κ(v)\kappa(v) of voters associated with vv. We study the computational complexity of this problem for two of the most basic voting rules, namely the Plurality rule and the Condorcet rule.Comment: An extended abstract appears in MFCS 201

    Multivariate Analyis of Swap Bribery

    Full text link
    We consider the computational complexity of a problem modeling bribery in the context of voting systems. In the scenario of Swap Bribery, each voter assigns a certain price for swapping the positions of two consecutive candidates in his preference ranking. The question is whether it is possible, without exceeding a given budget, to bribe the voters in a way that the preferred candidate wins in the election. We initiate a parameterized and multivariate complexity analysis of Swap Bribery, focusing on the case of k-approval. We investigate how different cost functions affect the computational complexity of the problem. We identify a special case of k-approval for which the problem can be solved in polynomial time, whereas we prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter tractability as well as W[1]-hardness results for certain natural parameters.Comment: 20 pages. Conference version published at IPEC 201

    Inapproximability Results for Approximate Nash Equilibria.

    Get PDF
    We study the problem of finding approximate Nash equilibria that satisfy certain conditions, such as providing good social welfare. In particular, we study the problem ϵ\epsilon-NE δ\delta-SW: find an ϵ\epsilon-approximate Nash equilibrium (ϵ\epsilon-NE) that is within δ\delta of the best social welfare achievable by an ϵ\epsilon-NE. Our main result is that, if the exponential-time hypothesis (ETH) is true, then solving (18O(δ))\left(\frac{1}{8} - \mathrm{O}(\delta)\right)-NE O(δ)\mathrm{O}(\delta)-SW for an n×nn\times n bimatrix game requires nΩ~(logn)n^{\mathrm{\widetilde \Omega}(\log n)} time. Building on this result, we show similar conditional running time lower bounds on a number of decision problems for approximate Nash equilibria that do not involve social welfare, including maximizing or minimizing a certain player's payoff, or finding approximate equilibria contained in a given pair of supports. We show quasi-polynomial lower bounds for these problems assuming that ETH holds, where these lower bounds apply to ϵ\epsilon-Nash equilibria for all ϵ<18\epsilon < \frac{1}{8}. The hardness of these other decision problems has so far only been studied in the context of exact equilibria.Comment: A short (14-page) version of this paper appeared at WINE 2016. Compared to that conference version, this new version improves the conditional lower bounds, which now rely on ETH rather than RETH (Randomized ETH

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Computing Constrained Approximate Equilibria in Polymatrix Games

    Get PDF
    This paper is about computing constrained approximate Nash equilibria in polymatrix games, which are succinctly represented many-player games defined by an interaction graph between the players. In a recent breakthrough, Rubinstein showed that there exists a small constant ϵ\epsilon, such that it is PPAD-complete to find an (unconstrained) ϵ\epsilon-Nash equilibrium of a polymatrix game. In the first part of the paper, we show that is NP-hard to decide if a polymatrix game has a constrained approximate equilibrium for 9 natural constraints and any non-trivial approximation guarantee. These results hold even for planar bipartite polymatrix games with degree 3 and at most 7 strategies per player, and all non-trivial approximation guarantees. These results stand in contrast to similar results for bimatrix games, which obviously need a non-constant number of actions, and which rely on stronger complexity-theoretic conjectures such as the exponential time hypothesis. In the second part, we provide a deterministic QPTAS for interaction graphs with bounded treewidth and with logarithmically many actions per player that can compute constrained approximate equilibria for a wide family of constraints that cover many of the constraints dealt with in the first part
    corecore