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Abstract. We present an epistemic logic ELF (Epistemic Logic with
Filters) where knowledge does not require complete certainty. In this
logic, instead of saying that an agent knows a particular fact if it is true
in every accessible world, we say that it knows the fact if it is true in a
sufficiently large set accessible worlds. On a technical level, we do this
by enriching the standard Kripke models of epistemic logic with a set
of filters: a sufficiently large set of worlds is one that is in the filter.
We introduce semantics for ELF, and give a sound and complete proof
system.

1 Introduction

In the standard Kripke semantics for epistemic logic, we say that an agent a
knows a proposition ϕ if and only if ϕ is true in every world that is epistemically
accessible for a [15,12]. In other words, according to such semantics a knows that
ϕ if and only if ϕ is true in every world that is consistent with a’s observations.

Unfortunately, it is generally not very hard to invent worlds that are consis-
tent with a’s observations where ϕ is false. Along a general line of skepticism
going back to (at least) Descartes’ evil demon (le mauvais genie) and that contin-
ues to flourish in logical and epistemological circles [25,10], consider the following
example, adapted from Harman [14].

Alice is sitting at her desk, writing a logic paper. Strictly speaking, the
skeptical scenario where she is merely a “brain in a vat” that wrongly
believes itself to be sitting at a desk is consistent with Alice’s observa-
tions. In theory, this means that the possible world where Alice is a brain
in a vat is epistemically accessible for her, so according to the standard
Kripke semantics she does not know that she is sitting at her desk. Still,
we would typically like to say that Alice does know this fact.

There are several solutions to this problem. Firstly, we could bite the bullet
and conclude that Alice does not, and cannot, know that she is sitting at her
desk. This skeptic’s choice is internally consistent, but results in a rather trivial
notion of (unobtainable) knowledge. So while we acknowledge that the skeptics
may be correct, that is not the kind of knowledge that we are interested in here.

Secondly, we could say that the scenario where Alice is a brain in a vat should
not be considered a proper possible world, and therefore should not be among
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Alice’s epistemic alternatives. Doing so can be justified from a contextualist
point of view [28,11,21], which states that the conditions for knowledge depend
on context. Whenever skeptical scenarios are irrelevant, they are excluded by
the context. As long as we are modeling a context where skeptical scenarios are
excluded, we may (and must) omit the worlds where Alice is a brain in a vat,
allowing us to conclude that Alice knows that she is sitting at her desk.

This second solution is the most practical one, and commonly used in epis-
temic logic. Unfortunately, this solution is not always available. If we want to
reason about whether Alice knows that she is not a brain in a vat, then clearly
the world where she is in fact a brain in a vat is relevant to our context. So it
cannot be omitted. What are the consequences? In the epistemic logical setting,
and in particular in the modal logical propositional modeling of it, the typical
notion to fall short of knowledge within a given context is called belief, and the
minimal difference between belief and knowledge is that belief unlike knowledge
may be false (incorrect). Even within that restriction there is a wide gap be-
tween defeasible belief [19] and so-called conviction [26]. Defeasible beliefs may
be defeated, i.e., the agents may be willing to change their beliefs after further
evidence or consideration. But false convictions remain false forever. When mod-
eling certain knowledge this rather Platonic focus on true knowledge is peculiar.
Why should one particular exception of the rule matter more than any other
exception? Many works have been dedicated to the difference between (modal)
knowledge and belief [18,16], and in particular on notions of knowledge closer to
belief [15,27], fallible knowledge [2] and (the more dynamically motivated) safe
belief [3]. They all fall short of modeling certain knowledge, because the set of
accessible worlds where ϕ is false is always too big, even when there is only one.

In this paper we therefore choose a third solution: we do include the world
where Alice is a brain in a vat, as well as other skeptical worlds. But we say that
we know ϕ even if there are accessible worlds where ϕ is false, as long as the set
of accessible ϕ worlds is sufficiently large.

Much like the second one, the third solution is justified by contextualism.
The key observation is that our context as modelers may be different from the
context of the agents being modelled. We are interested in whether Alice knows
she is not a brain in a vat, so our context does not allow us to omit the worlds
where she is a brain in a vat. But as long as Alice’s context allows her to ignore
such skeptical worlds, she can know she is not a brain in a vat even though the
worlds are accessible.

The remaining question, then, is to decide on what we mean by the set of
counterexamples being “small”. A simple numerical (“up to n counterexamples”)
or finite fraction (“up to n

m of the possible worlds may be counterexamples”)
rule would not solve Alice’s problem: we can create infinitely many skeptical
scenarios, so for every n ∈ N there are more than n counterexamples, and the
ratio of worlds where she is a brain in a vat divided by those where she is not is
∞
∞ and therefore not a finite fraction. Note also that a numerical or finite fraction
threshold is vulnerable to the lottery paradox [20], while Alice’s example above
and further examples below are immune to finite lottery paradoxes.



A more promising approach would be to say that the number of counterex-
amples is small if the set of counterexamples has measure zero. Such a notion
of knowledge, employing Keisler’s infinitesimals for measure zero sets [17], has
been proposed in [1] for modeling knowledge revision. Measure theory is unnec-
essarily heavy machinery for our current purpose, however: we do not need an
exact measure of all sets of worlds, we only need to know which sets are small.
We therefore prefer a very similar but somewhat more lightweight approach: we
use filters. The notion goes back to [7], and it is frequently used within modal
logic [6], also for default reasoning [4]. We say that the set of counterexamples
is small if its complement is a member of the filter.

The structure of the rest of this paper is as follows. In Section 2 we formally
define the syntax and semantics of our logic Epistemic Logic with Filters (ELF).
Then, in Section 3 we present detailed examples. In Section 4 we provide a sound
and complete axiomatization for ELF. Section 5 compares our framework to the
class of non-normal modal logics known as regular modal logics.

2 Syntax and Semantics

Before defining the language, models and semantics, let us first define filters.

Definition 1. Let S be a set. Then F ⊆ 2S is a filter if

– F 6= ∅,
– for every X1, X2 ∈ F , we have X1 ∩X2 ∈ F ,
– for every X1 ∈ F and every X2 ⊆ S, if X1 ⊆ X2 then X2 ∈ F .

A filter F is proper if ∅ 6∈ F .

We have no use for improper filters, so for the remainder of this paper we assume
all filters to be proper.

A filter serves to identify which subsets of S are small or large, with X ⊆ S
being large if X ∈ F and X ⊆ S being small if S \X ∈ F . Note that, by the fact
that for X1, X2 ∈ F we have X1 ∩X2 ∈ F , the intersection of two large sets is
itself large. Typical examples of filters include (i) the co-finite subsets of S (if S
is infinite),3 (ii) the sets of full measure in a measure space and (iii) for a fixed
C ⊆ S, all sets that contain C.

The latter kind of filter, where F = {X ⊆ S | C ⊆ X}, is called a principal
filter. In that case, the set C can be considered to be the set of important, or
relevant worlds.4 So in that case it may not be quite accurate to say that a set
X ∈ F is necessarily large. It is, however, sufficiently large in the sense that
it contains all important worlds. Another way to think of this is that while C
may have a small cardinality, the fact that they are important gives C a larger
weight, so any set containing C has large weight.

The language of ELF is the same as that of standard single-agent modal
logic.

3 An epistemic modal use of that is the Majority Logic of [24].
4 This is similar to the approach advocated in [21], see also Remark 3.



Definition 2. Let At be a countable set of propositional atoms. The language
L is given by the following normal form, where p ∈ At:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ,

As usual, we omit parentheses where this should not cause confusion, and use
∧,→,↔,♦ and

∧
as abbreviations.

The models of ELF are based on the usual Kripke models, but they are
enriched with filter structures.

Definition 3. A model is a tupleM = (W,R,F , V ), where W is a set of worlds,
R ⊆ W × W is an accessibility relation, F : W → {F | F is a filter on W}
assigns to each world a filter and V : At → 2W is a valuation.

We write R(w) for {w′ | (w,w′) ∈ R}.

Now we can define the semantics.

Definition 4. The satisfaction relation |= is defined recursively by

M, w |= p ⇔ w ∈ V (p)
M, w |= ¬ϕ ⇔M, w 6|= ϕ
M, w |= ϕ ∨ ψ ⇔M, w |= ϕ or M, w |= ψ
M, w |= �ϕ ⇔ [[ϕ]]M ∩R(w) ∈ F(w)

We use |= ϕ and Γ |= ϕ in the usual way to denote ϕ being valid and ϕ being
entailed by Γ , respectively.

Note that we have M, w |= �ϕ if there is a large set of accessible ϕ worlds.
This is not exactly the same as there being a small set of accessible ¬ϕ worlds:
the accessible ϕ worlds being large always implies that the accessible ¬ϕ worlds
are small, but if R(w) 6∈ F(w) it is possible for [[¬ϕ]]M∩R(w) to be small without
[[ϕ]]M∩R(w) being large. The reason for this “largeness requirement” is that we
consider knowledge to require some amount of intellectual effort and honesty.

It is generally held (e.g., [9,13,22]) that a necessary5 condition for knowing
ϕ is that ϕ is a justified true belief. So, in particular, for an agent to know ϕ
it must be the case that there is a justification for the agent to believe ϕ. In
the case of standard epistemic logic, this justification derives from the fact that
all accessible worlds satisfy ϕ. Here, in ELF, the justification derives from the
slightly weaker condition that the accessible ¬ϕ worlds are negligible compared
to the accessible ϕ worlds.

In order to obtain this justification it does not suffice that the set of accessible
¬ϕ worlds is small in an absolute sense; if the agent considers three possible
worlds and all three of them satisfy ¬ϕ, then it would be strange to say that
they are justified in believing ϕ simply because there are few counterexample.
Instead, the set of accessible counterexamples must be small compared to the
set of accessible ϕ worlds. But even that is not quite enough; if there are no
accessible ¬ϕ worlds and at least one accessible ϕ world, then one could argue

5 But, unless one uses a very strong notion of justification, not sufficient [13].



that the set of ¬ϕ worlds is small compared to the set of ϕ worlds. In some cases,
we would endorse the claim that this single accessible ϕ world, in the absence of
accessible ¬ϕ worlds, provides a justification for believing ϕ. But in other cases,
the fact that there is only one world that the agent considers possible can betray
a lack of effort and imagination by the agent.

We want the modelM to describe what the agent knows, not what the agent
thinks they know. This means that the model is drawn from the perspective of an
outside observer who knows the agent’s mental state, not from the perspective
of the agent themselves. So the relation R describes objectively which worlds
the agent considers possible. But the mental state is itself of course a subjective
opinion of the agent: we are objectively describing a subjective mental state. If
the agent has never thought of a world w2, it would therefore be inaccurate to
say that the agent considers w2 possible, even if w2 happens to be consistent
with the agent’s observations.

As a result, if the agent does not consider a world w2 to be accessible, this
could be either because the agent has thought of w2 and determined it to be
incompatible with their information, or because the agent never though of w2.
So if the agent considers only one world to be accessible, this could be because
the agent is lazy, and didn’t think of any other worlds. In that case, even if the
only accessible world satisfies ϕ, this would not be a justification for believing
ϕ. In order for the agent to be justified in believing ϕ, they should first consider
sufficiently many worlds.

Note that the agent must consider sufficiently many worlds. This is not a
cardinality requirement: in some situations, a finite number of worlds might be
sufficient, while in another case even a continuum of worlds might not be enough.
Instead, sufficiency is determined from the perspective of the objective, outside
observer who designs the model. Specifically, the model designer determines
sufficiency using the filter function F .

If the agent considered sufficiently many worlds, so R(w) ∈ F(w), and all
but a negligible amount of these worlds satisfy ϕ, so [[ϕ]]M ∈ F(w), this yields
the justification for the agent’s belief that ϕ. These two conditions together are
equivalent to [[ϕ]]M ∩R(w) ∈ F(w), our condition for knowledge.

Remark 1. Note that we allow the filter F(w) to depend on the world w. This is
because, otherwise, it would be impossible to have M, w1 |= �ϕ and M, w2 |=
�¬ϕ. After all,M, w1 |= �ϕ requires [[ϕ]]M ∈ F(w1) andM, w2 |= �¬ϕ requires
[[¬ϕ]]M ∈ F(w2). So if F(w1) = F(w2), then we would have [[ϕ]]M ∩ [[¬ϕ]]M ∈
F(w1), which is a contradiction since ∅ 6∈ F(w1).

Remark 2. The semantics presented above do not guarantee that knowledge in
ELF satisfies certain properties that knowledge is often considered to have, such
as truthfulness and introspection. ELF is, in this sense, similar to the basic modal
logic K. And, like K, ELF can be extended with axioms and frame properties to
guarantee truthfulness and introspection.

Remark 3. We recall example (iii) of a filter F given by F = {X ⊆ S | C ⊆ S}.
This can be seen as an implementation of the contextualist view from [21] of



knowledge as truth in all relevant accessible worlds. Among yet other precisions,
Lewis writes:

Then S knows that P iff S’s evidence eliminates every possibility in
which not-P — Psst! — except for those possibilities that conflict with
our proper presuppositions. [21, page 554]

In other words, a proposition (called P ) is known (by an agent S) if it is true
in the intersection of the accessible worlds and the relevant worlds. On the as-
sumption that R(w) ∈ F (w), this corresponds exactly to the semantics of ELF
when S is the set of relevant worlds.

ELF is more general however, because we do not require that R(w) ∈ F (w)
and not every filter is of the form {X ⊆ S | C ⊆ S}.

Now that we have defined the semantics of our logic, we can consider a few
examples in some detail.

3 Examples

Example 1. Bob is a mathematics student. On an exam, he writes a proof by
case distinction for a proposition p in some mathematical theory T. Because
Bob is not very experienced in writing proofs, however, he is not certain that
his case distinction is exhaustive. But even though Bob does not know this, his
case distinction is in fact exhaustive and his proof is correct.

We will represent Bob’s situation by a pointed model M, w, where M =
(W,R,F , V ). The possible worlds of M are closely related to the models of T.
Specifically, for every model T of T, there is a world where T is the “true” model.
Having one such world per model is not quite enough, however, because there
are other facts that may differ per world. In particular, if two worlds w1 and w2

have the same model T but Bob’s beliefs differ between w1 and w2, then they
must be different worlds. This can be represented by considering these worlds to
be pairs w = (T , i), where i is simply some index used to differentiate between
worlds with the same model of T.6

In Bob’s proof, he considered the cases q1, · · · , qn. Because the case distinc-
tion is in fact exhaustive, every model of T satisfies at least one of these cases.
So for every (T , i), there is at least one j such thatM, (T , i) |= qj . Furthermore,
since the proof is correct, any world that satisfies one of these cases also satisfies
p. So we have M, (T , i) |= p.

In order to represent Bob’s uncertainty about whether his case distinction is
exhaustive, we need some further worlds where none of the cases apply. While
there are no models of T that fall outside the case distinction, Bob thinks that
there might be. So we need to add a number of worlds of the form (N , i), where
M, (N , i) 6|= qj for every j. Here N is objectively not a model of T, but Bob is
not certain that it is not a model. Because none of the cases apply, it is uncertain

6 Because we require W to be a set, as opposed to a class, we may have to restrict
ourselves to the models of T in some set-theoretic universe U , where W 6∈ U .



whether these worlds satisfy p. It is possible for p to be true there, but it is also
possible for p to be false in these worlds.

The worlds that Bob considers possible are those that fall inside his case
distinction. This is true for every world, so R(w′) = V (q1)∪· · ·∪V (qn) for every
w′ ∈ W . The filters represent the “relevant” worlds, in the sense that one is
justified in believing a proposition after verifying that it holds in every world
of the filter. Bob’s belief in p is justified if p is true in every model of T, so
F(w) = {F | C ⊆ F}, where C is the set of worlds of the form (T , i). We have
R(w) ∩ [[p]]M ⊇ C, and therefore M, w |= �p. So Bob knows that p is true.

However, even though Bob’s case distinction was exhaustive, he is uncertain
about this. So in some of the accessible worlds w′ = (T , i) his case distinction
is not exhaustive. In such a world we have F(w′) = {F | C ′ ⊆ F}, where C ′

contains not only the worlds of the form (T , j), but also some worlds of the
form (N , j). In these worlds, we have R(w′) ∩ [[p]]M 6∈ F(w′) and therefore
M, w′ 6|= �p. Note that it does not matter whether p holds in the worlds C ′ \C.
Even if p happens to be true in all of C ′, the fact that his case distinction was
non-exhaustive means that his belief in the truth of p would be unjustified.

Example 2. Suppose that we are about to draw a random real number uniformly
from the interval [0, 1]. This situation can be modeled in the following way:

– For every x ∈ [0, 1] there is a world wx where x is the number that is drawn.
– Every world is accessible from every other world, i.e., R = {(wx, wy) | x, y ∈

[0, 1]}.
– The large sets are those that have full measure, i.e., for every x ∈ [0, 1],

we have F(wx) = {wY | µ(Y ) = 1}, where µ is the Lebesgue measure and
wY = {wy | y ∈ Y }.

Under these circumstances, we can say that we know that the drawn number x
will be irrational, since the rationals have measure 0. Note that this knowledge
is fallible: even in those worlds where we will draw a rational number, we know
that the number will be irrational. Such failure is infinitely unlikely, however.

Example 3. Claire is a software engineer, who is demonstrating a program to a
client. The program has been given its input, and is now running. Claire tells
the client that she knows that the program will terminate and return the output
“TRUE”. In saying so, she ignores a number of possible worlds. In particular, if
there is a power failure then the program will not terminate at all. Claire has
thought of such possibilities, but she considers the conversation with the client to
have a number of underlying unspoken assumptions, including the assumption
that there will be no power failure. So while there are possible worlds where
the program is interrupted by power failure or some other outside factor, the
unspoken assumptions render such worlds irrelevant.

The set of worlds W of our model is given by W = W1 ∪W2, where W1 is
the set of worlds where the program will be allowed to run normally and W2 is
the set of worlds where the program will be interrupted by some outside event,
such as a power cut or a meteorite strike. The accessibility relation is given by



R = W × W . Finally, for every world w the filter F(w) is the set of all sets
containing the relevant worlds. In this case, as discussed above, we consider the
relevant worlds to be those where the program is allowed to run uninterrupted,
so F(w) = {F | W1 ⊆ F}. We let p stand for “the program terminates and
returns TRUE”, so V (p) = W1.

For any world w of this model M we have M, w |= �p. Note that, as in
the previous example, this knowledge is fallible: Claire knows p in every world,
including those where a power failure occurs. Unlike the previous example, how-
ever, such failure is not necessarily infinitely unlikely. The probability of power
failures et cetera is low, but not infinitely so, after all. But this possibility of fail-
ure does not stop Claire from knowing p, under the conversational assumptions.

Example 4. As above, except now the possibility of a power failure or other
outside event has not crossed Claire’s mind. The accessibility relation is now
given by R = W ×W1. But because W1 contains all relevant worlds, Claire still
knows that the program will return TRUE.

Example 5. As above, except that Claire is now less careful in considering all
possible executions of her program. Instead of considering all possible executions
W1, she makes some implicit assumptions and only thinks of W ′1 ⊂ W1. We
have R = W × W ′1. The set of relevant worlds remains the same, however:
F(w) = {F |W1 ⊆ F}.

In this situation, Claire does not know that the program will return TRUE,
because R(w) 6∈ F(w). Note that this is independent of whether the program
returns TRUE in the relevant worlds that she failed to consider: Claire’s belief
that the program will return TRUE is not justified, so even if she happens to be
right she doesn’t know that the program will return TRUE.

4 Axiomatization

We introduce the proof system WKL. The W in WKL stands for “weak”, since
WKL is strictly weaker than KL, which is obtained by adding the axiom L to
the standard proof system K for modal logic.7

Definition 5. The proof system WKL is given by the following rules and axiom
schemata.

P all substitution instances of propositional tautologies
K �(ϕ→ ψ)→ (�ϕ→ �ψ)
L ¬�⊥
RM if ϕ→ ψ is a theorem, infer �ϕ→ �ψ
MP from ϕ→ ψ and ϕ, infer ψ.

7 The axiom L is, using the other axioms and rules, interderivable with the axiom D,
given by �ϕ → ♦ϕ. One could, therefore, think of WKL as “weak KD” instead
of “weak KL”. Our reason for preferring L over D in this context is that L more
closely follows the semantical constraint that ∅ 6∈ F(w).



Definition 6. A formula ϕ is a theorem of WKL, denoted ` ϕ if it can be
derived in a finite number of steps using the rules and axioms of WKL. A
formula ϕ is entailed by a set Γ of formulas, denoted Γ ` ϕ if ϕ can be derived
in a finite number of steps using the rules and axioms of WKL and using Γ as
premises.

Note that WKL does not have a necessitation rule, i.e., we cannot infer from
` ϕ that ` �ϕ. Instead, we use a strictly weaker monotonicity rule RM. In
particular, �> is not provable in WKL.8 ELF is therefore not a normal modal
logic, although it is a regular modal logic [23]. In Section 5 we discuss ELF’s
position in the landscape of non-normal modal logics.

Soundness of WKL follows immediately from the semantics.

Lemma 1 (Soundness). For all Γ ⊆ L and ϕ ∈ L, if Γ ` ϕ then Γ |= ϕ.

Completeness of WKL is shown in the usual way, i.e., by constructing a
canonical model and proving that every consistent formula is satisfied in that
model (see for example [5]). Some of the following lemmas can be proven in the
exact same way as the corresponding lemmas in other completeness proofs. We
therefore omit the proofs of those lemmas.

We start with a lemma that allows us to switch between three different
characterizations of entailment.

Lemma 2. The following are equivalent.

1. Γ ` ϕ
2. there is a finite subset Γ ′ of Γ such that Γ ′ ` ϕ
3. there is a finite subset Γ ′ of Γ such that `

∧
Γ ′ → ϕ

As usual, maximal consistent sets will serve as worlds for the canonical model.

Definition 7. A set Γ of formulas is consistent if Γ 6` ⊥, maximal if for every
formula ϕ either ϕ ∈ Γ or ¬ϕ ∈ Γ and maximal consistent if it is both maximal
and consistent.

Lemma 3 (Lindenbaum lemma). Let Γ be a consistent set. Then there is a
maximal consistent set ∆ such that Γ ⊆ ∆.

Definition 8. If Γ is a set of formulas, then �−1Γ = {ϕ | �ϕ ∈ Γ}.

The proof of the following lemma is slightly more complicated than usual, since
we only have access to the monotonicity rule RM as opposed to the more pow-
erful necessitation rule. We therefore provide a detailed proof.

Lemma 4. If Γ is consistent, then so is �−1Γ .

8 Note that 6|= �> in ELF, since M, w 6|= �> when R(w) 6∈ F(w).



Proof. Suppose towards a contradiction that �−1Γ ` ⊥. Then there is a finite
subset of Φ ⊆ �−1Γ such that

`
∧
Φ→ ⊥.

By RM, this yields

` �
∧
Φ→ �⊥. (1)

Now, note that by repeatedly applying K and MP, we also have

`
∧

�Φ→ �
∧
Φ. (2)

Together, (1) and (2) imply that

�Φ ` �⊥

and therefore by L and the fact that �Φ ⊆ Γ

Γ ` ⊥,

contradicting the consistency of Γ . ut

Lemma 5. If Γ is maximal consistent and Γ ` ϕ, then ϕ ∈ Γ .

Proof. By maximality, either ϕ ∈ Γ or ¬ϕ ∈ Γ . Since Γ ∪ {¬ϕ} ` ⊥ it follows
from consistency that ϕ ∈ Γ . ut

Now, let us define the canonical model.

Definition 9. The canonical model Mc = (W c, Rc, V c,Fc) is given by:

– W c is the set of maximal consistent sets of formulas,
– F(w) = {F ⊆W c | S(w) ⊆ F}, where S(w) = {w′ | �−1w ⊆ w′},
– if �> ∈ w, then Rc(w) = S(w) otherwise Rc(w) = ∅,
– V c(p) = {w ∈W c | p ∈ w}.

Lemma 6 (Truth Lemma). For every w ∈W c and every formula ϕ,Mc, w |=
ϕ if and only if ϕ ∈ w.

Proof. By induction on the complexity of ϕ. If ϕ is atomic, then the lemma
follows immediately from the definition of V c. So assume as induction hypothesis
that ϕ is not atomic and that the lemma holds for all strict subformulas of ϕ.

We continue by a case distinction on the main connective of ϕ. If it is a
Boolean connective, then the lemma is once again trivial. So let us consider the
interesting case, ϕ = �ψ.

Suppose �ψ ∈ w. By the definition of S(w), we have [[ψ]]Mc ⊇ S(w). Fur-
thermore, by P we have ` ψ → >, so by RM we have ` �ψ → �>. Since w
is maximal and consistent, this implies that �> ∈ w. So Rc(w) = S(w). We
therefore have [[ψ]]Mc ∩Rc(w) = S(w) ∈ F(w), so Mc, w |= �ψ.



Suppose, on the other hand, that �ψ 6∈ w. We distinguish two sub-cases.
First, suppose that �> 6∈ w. Then Rc(w) = ∅ 6∈ F(w), so Mc, w 6|= �ψ.

The other case is if �> ∈ w but �ψ 6∈ w. In this case, suppose towards a
contradiction that �−1w ∪ {¬ψ} is inconsistent. Then there is a finite subset
Φ of �−1w such that Φ ∪ {¬ψ} is inconsistent. It follows that `

∧
Φ → ψ and

therefore ` �
∧
Φ → �ψ. Since �ϕ ∈ w for every ϕ ∈ Φ, we have �

∧
Φ ∈ w

and therefore �ψ ∈ w, contradicting our assumption.
So �−1w∪{¬ψ} is consistent, and can therefore be extended to a maximally

consistent set w′. By the definition of F , we have that w′ ∈ F for every F ∈
F(w). Since w′ 6∈ [[ψ]]Mc , it follows that [[ψ]]Mc ∩ R(w) 6∈ F(w), and therefore
Mc, w 6|= �ψ. ut

Completeness now follows immediately.

Lemma 7 (Completeness). For all Γ ⊆ L and ϕ ∈ L, if Γ |= ϕ then Γ ` ϕ.

Proof. If Γ 6` ϕ then Γ ∪ {¬ϕ} is consistent, so by Lemma 3 there is a maximal
consistent set w ⊇ Γ ∪ {¬ϕ}. By Lemma 6 this implies that Mc, w |= ψ for
every ψ ∈ Γ and Mc, w 6|= ϕ. Therefore, Γ 6|= ϕ. ut

We have now proven both soundness and completeness.

Theorem 1. For all Γ ⊆ L and ϕ ∈ K, we have Γ |= ϕ if and only if Γ ` ϕ.

Remark 4. InMc, every filter is of the form F(w) = {F ⊆W c | S(w) ⊆ F}. So
all filters in the canonical model are principal filters. It follows that the proof
system is also sound and complete for the class of models

M := {M = (W,R,F , V ) | ∀w ∈W : F(w) is principal}.

5 Comparison to other non-normal modal logics

ELF is a so-called non-normal modal logic. In this section, we therefore compare
the semantics of ELF to the commonly used neighborhood semantics, and the
proof system WKL to other proof systems for non-normal modal logics.

In neighborhood semantics [8,23], a model is a tuple M = (W,N , V ), where

W is a set of worlds, N : W → 22
W

is a neighborhood function that assigns to
each world a set of sets of worlds and V : At → 2W is a valuation. We then say
that M, w |= �ϕ if and only if [[ϕ]]M ∈ N (w).

The semantics of ELF can be reduced to neighborhood semantics. This is
not very surprising, both because the formalism of neighborhood semantics is
sufficiently versatile to encompass almost everything done in modal logic, and
because the filter F(w) already looks a lot like a neighborhood function N . Still,
translating from ELF to neighborhood semantics is not entirely trivial; after all,
whether M, w |= �ϕ depends not only of F(w) but also on R(w), so F is not
exactly the neighborhood function that we are looking for. Instead, given an



ELF model M = (W,R,F , V ) we find a neighborhood model M′ = (W,N , V )
by taking

N (w) =

{
F(w) if R(w) ∈ F(w)
∅ otherwise

Proposition 1. M, w |= ϕ if and only if M′, w |= ϕ.

Proof. By induction. As base case, suppose that ϕ is an atom p. Since M and
M′ have the same valuation, we haveM, w |= p⇔M′, w |= p. Suppose then as
induction hypothesis that ϕ is not atomic, and that for every strict subformula
ψ of ϕ we have M, w |= ψ ⇔ M′, w |= ψ. We continue by case distinction on
the main connective of ϕ.

If the main connective of ϕ is Boolean, then it follows immediately from the
induction hypothesis thatM, w |= ϕ⇔M′, w |= ϕ. Suppose then that ϕ = �ψ.
Then

M, w |= �ψ ⇔ [[ψ]]M ∩R(w) ∈ F(w)⇔ [[ψ]]M ∈ F(w) and R(w) ∈ F(w)

⇔ [[ψ]]M ∈ N (w)⇔ [[ψ]]M′ ∈ N (w)⇔M′, w |= �ψ

This completes the case distinction and thereby the induction step. ut

Note that while F(w) is always a filter, N (w) need not be one. After all, a filter
is by definition non-empty, whereas N (w) is empty whenever R(w) 6∈ F(w).

The neighborhood function N is, in the terminology of [23], consistent, closed
under (binary) intersection and closed under supersets. From the fact that N is
consistent, it immediately follows that |= ¬�⊥, from the fact that N is closed
under intersection it follows that |= (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and from the fact
that N is closed under supersets it follows that |= �(ϕ→ ψ)→ (�ϕ→ �ψ).

We continue by comparing the proof system WKL, where we recall Definition
5 on page 8, to other proof systems for non-normal modal logics. We write WK
for the proof system containing P, K, RM and MP. So WK is WKL minus
the axiom L.

A regular modal logic [8] contains the following axioms and rules.

P all propositional tautologies
Dual ♦ϕ↔ ¬�¬ϕ
M �(ϕ ∧ ψ)→ (�ϕ ∧�ψ)
C (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)
RM from ϕ→ ψ, infer �ϕ→ �ψ
MP from ϕ→ ψ and ϕ, infer ψ

We refer to the proof system containing exactly these six axioms and rules as
the minimal regular modal logic MRML.

The proof system WK is an alternative presentation of a regular modal logic
[8, Exercise 8.13a, page 241], i.e., a formula is provable in MRML if and only
if it is provable in WK. It follows that WKL is a regular modal logic.



The axiom L is not provable in MRML. This can, for example, be seen by
noting that MRML is sound and complete for relational models with impossible
worlds (see, e.g., [23]), and that L is not valid on those models. So WKL is a
strictly stronger proof system than MRML.

Regular modal logics have been studied quite extensively, see the aforemen-
tioned [23] for an overview. But the extension of a regular modal logic with the
axiom L specifically has not, to the best of our knowledge, been studied before.

6 Conclusion

We have introduced ELF, an epistemic logic that uses filters in order to represent
situations where an agent knows (or has a justified belief) that a proposition ϕ
is true even though there are some epistemically accessible worlds where ϕ is
false. We have shown that the proof system WKL is sound and complete for
ELF. This proof system is similar to KD, except that the necessitation rule of
that proof system is replaced by a strictly weaker monotonicity rule.

In the basic version of ELF that we discussed in this paper, the properties
of truthfulness, positive introspection and negative introspection are not valid.
As with normal modal logics, we can enforce these properties by restricting
to a smaller class of models. However, unlike normal modal logic, there is not
something as elegant and general as correspondence, and there are also additional
properties to consider, such as �> (N), the dual of our ¬�⊥ (L) axiom. We can
then create a sound and complete proof system for ELF on such smaller classes of
models by adding a number of axioms to WKL. Such technical explorations are
relevant, as intuitive scenarios involving certainty and knowledge often satisfy,
or fail to satisfy, such constraints. Due to space constraints we must leave the
reporting of such frame conditions and axioms for future work.
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