14,523 research outputs found

    A model for the formation of the active region corona driven by magnetic flux emergence

    Full text link
    We present the first model that couples the formation of the corona of a solar active region to a model of the emergence of a sunspot pair. This allows us to study when, where, and why active region loops form, and how they evolve. We use a 3D radiation MHD simulation of the emergence of an active region through the upper convection zone and the photosphere as a lower boundary for a 3D MHD coronal model. The latter accounts for the braiding of the magnetic fieldlines, which induces currents in the corona heating up the plasma. We synthesize the coronal emission for a direct comparison to observations. Starting with a basically field-free atmosphere we follow the filling of the corona with magnetic field and plasma. Numerous individually identifiable hot coronal loops form, and reach temperatures well above 1 MK with densities comparable to observations. The footpoints of these loops are found where small patches of magnetic flux concentrations move into the sunspots. The loop formation is triggered by an increase of upwards-directed Poynting flux at their footpoints in the photosphere. In the synthesized EUV emission these loops develop within a few minutes. The first EUV loop appears as a thin tube, then rises and expands significantly in the horizontal direction. Later, the spatially inhomogeneous heat input leads to a fragmented system of multiple loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&

    Magnetic Jam in the Corona of the Sun

    Full text link
    The outer solar atmosphere, the corona, contains plasma at temperatures of more than a million K, more than 100 times hotter that solar surface. How this gas is heated is a fundamental question tightly interwoven with the structure of the magnetic field in the upper atmosphere. Conducting numerical experiments based on magnetohydrodynamics we account for both the evolving three-dimensional structure of the atmosphere and the complex interaction of magnetic field and plasma. Together this defines the formation and evolution of coronal loops, the basic building block prominently seen in X-rays and extreme ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can evolve quite differently from the magnetic field. While the magnetic field continuously expands as new magnetic flux emerges through the solar surface, the plasma gets heated on successively emerging fieldlines creating an EUV loop that remains roughly at the same place. For each snapshot the EUV images outline the magnetic field, but in contrast to the traditional view, the temporal evolution of the magnetic field and the EUV loops can be different. Through this we show that the thermal and the magnetic evolution in the outer atmosphere of a cool star has to be treated together, and cannot be simply separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12 pages and 8 figure

    Unparticle Physics in the Moller Scattering

    Full text link
    We investigate the virtual effects of vector unparticles in the Moller scattering. We derive the analytic expression for scattering amplitudes with unpolarized beams. We obtain 95% confidence level limits on the unparticle couplings λV\lambda_{V} and λA\lambda_{A} with integrated luminosity of Lint=50,500fb1L_{int}=50, 500 fb^{-1} and s=100,300\sqrt{s}=100, 300 and 500 GeV energies. We show that limits on λV\lambda_{V} are more sensitive than λA\lambda_{A}.Comment: 10 pages, 5 figures, 4 table

    Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions

    Full text link
    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.Comment: 21 pages, 18 figures, accepted for publication in Ap

    Quantum theory for mesoscopic electric circuits

    Full text link
    A quantum theory for mesoscopic electric circuits in accord with the discreteness of electric charges is proposed. On the basis of the theory, Schr\"{o}dinger equation for the quantum LC-design and L-design is solved exactly. The uncertainty relation for electric charge and current is obtained and a minimum uncertainty state is solved. By introducing a gauge field, a formula for persistent current arising from magnetic flux is obtained from a new point of view.Comment: revtex, no figure

    Cosmological constraints on unparticle dark matter

    Full text link
    In unparticle dark matter (unmatter) models the equation of state of the unmatter is given by p=ρ/(2dU+1)p=\rho/(2d_U+1), where dUd_U is the scaling factor. Unmatter with such equations of state would have a significant impact on the expansion history of the universe. Using type Ia supernovae (SNIa), the baryon acoustic oscillation (BAO) measurements and the shift parameter of the cosmic microwave background (CMB) to place constraints on such unmatter models we find that if only the SNIa data is used the constraints are weak. However, with the BAO and CMB shift parameter data added strong constraints can be obtained. For the Λ\LambdaUDM model, in which unmatter is the sole dark matter, we find that dU>60d_U > 60 at 95% C.L. For comparison, in most unparticle physics models it is assumed dU<2d_U<2. For the Λ\LambdaCUDM model, in which unmatter co-exists with cold dark matter, we found that the unmatter can at most make up a few percent of the total cosmic density if dU<10d_U<10, thus it can not be the major component of dark matter.Comment: Replaced with revised version. BAO data is added to make a tighter constraint. Version accepted for publication on Euro.Phys.J.

    Unparticle physics and lepton flavor violating radion decays in the Randall-Sundrum scenario

    Get PDF
    We predict the branching ratios of the lepton flavor violating radion decays r -> e^{\pm} \mu^{\pm}, r -> e^{\pm} \tau^{\pm} and r ->\mu^{\pm} \tau^{\pm} in the framework of the Randall-Sundrum scenario that the lepton flavor violation is carried by the scalar unparticle mediation. We observe that their BRs are strongly sensitive to the unparticle scaling dimension and, for its small values, the branching ratios can reach to the values of the order of 10^{-8}, for the heavy lepton flavor case.Comment: 21 pages, 11 Figures, 1 Tabl

    Reduction of Thermal Resistance and Optical Power Loss Using Thin-Film Light-Emitting Diode (LED) Structure

    Get PDF
    In this paper, a GaN-LED with sapphire structure and a thin-film LED without sapphire structure are characterized in the photo-electro-thermal (PET) modeling framework for comparison. Starting from the analysis and modeling of internal quantum efficiency as a function of current and temperature of blue LED, this work develops the thin-film LED device model and derives its optical power and the heat dissipation coefficient. The device parameters of the two LED devices with different structural designs are then compared. Practical optical power measurements are compared with theoretical predictions based on the two types of fabricated devices. It is shown that the thin-film LED device has much lower thermal resistance and optical power loss.published_or_final_versio

    Stress distribution during cold compression of a quartz aggregate using synchrotron X-ray diffraction: Observed yielding, damage, and grain crushing

    Get PDF
    We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity and anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts
    corecore