183 research outputs found

    Ion channels, long QT syndrome and arrhythmogenesis in ageing.

    Get PDF
    Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias particularly after 40 years of age consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing WT murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.KJ is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. KC was funded by the Physiological Society, United Kingdom. HV is funded by the Wellcome Trust Research Training Fellowship (105727/Z/14/Z) and Sudden Arrhythmic Death Syndrome (SADS), UK. SA is funded by a Medical Research Council Research Fellowship (MR/M001288/1). AG is funded by the McVeigh Benefaction and Sudden Arrhythmic Death Syndrome (SADS), UK. CLHH is funded by the Wellcome Trust, Medical Research Council, British Heart Foundation and McVeigh Benefaction

    Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features.

    Get PDF
    Exercising horses uniquely accommodate 7-8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes

    Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes

    Get PDF
    Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+^{+} current components play critical parts. Early peak, Na+^{+} currents (INa_{Na}) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+^{+} currents (INa−L_{Na-L}) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of INa−L_{Na-L} can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+^{+} conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+^{+} channel abnormalities increasing INa−L_{Na-L} are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate INa−L_{Na-L}. These include (1) overlaps between steady-state activation and inactivation increasing window current\textit{window current}, (2) kinetic deficiencies in Na+^{+} channel inactivation leading to bursting phenomena\textit{bursting phenomena} associated with repetitive channel openings and (3) non-equilibrium gating\textit{non-equilibrium gating} processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased INa−L_{Na-L}.KC was funded by the Physiological Society, United Kingdom at the University of Surrey. KJ is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia, and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. ML is funded by the British Heart Foundation (PG/14/80/31106, PG/16/67/32340) and Medical Research Council (G10002647). CLHH is funded by the Medical Research Council (MR/M001288/1), Wellcome Trust (105727/Z/14/Z), British Heart Foundation (PG/14/79/31102), the McVeigh Benefaction and SADS UK

    The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3.

    Get PDF
    Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to β-adrenergic challenge, have therapeutic implications for ageing LQTS patients

    Economic development, human development, and the pursuit of happiness, April 1, 2, and 3, 2004

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring conference, which took place during April 1, 2, and 3, 2004.The conference asks the questions, how can we make sure that the benefits of economic growth flow into health, education, welfare, and other aspects of human development; and what is the relationship between human development and economic development? Speakers and participants discuss the role that culture, legal and political institutions, the UN Developmental Goals, the level of decision-making, and ethics, play in development

    Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1β Deficient Murine Hearts

    Get PDF
    BackgroundDeficiencies in the transcriptional co-activator, peroxisome proliferative activated receptor, gamma, coactivator-1β are implicated in deficient mitochondrial function. The latter accompanies clinical conditions including aging, physical inactivity, obesity, and diabetes. Recent electrophysiological studies reported that Pgc-1β-/- mice recapitulate clinical age-dependent atrial pro-arrhythmic phenotypes. They implicated impaired chronotropic responses to adrenergic challenge, compromised action potential (AP) generation and conduction despite normal AP recovery timecourses and background resting potentials, altered intracellular Ca2+ homeostasis, and fibrotic change in the observed arrhythmogenicity.ObjectiveWe explored the extent to which these age-dependent physiological changes correlated with alterations in gene transcription in murine Pgc-1β-/- atria.Methods and ResultsRNA isolated from murine atrial tissue samples from young (12–16 weeks) and aged (&gt;52 weeks of age), wild type (WT) and Pgc-1β-/- mice were studied by pre-probed quantitative PCR array cards. We examined genes encoding sixty ion channels and other strategic atrial electrophysiological proteins. Pgc-1β-/- genotype independently reduced gene transcription underlying Na+-K+-ATPase, sarcoplasmic reticular Ca2+-ATPase, background K+ channel and cholinergic receptor function. Age independently decreased Na+-K+-ATPase and fibrotic markers. Both factors interacted to alter Hcn4 channel activity underlying atrial automaticity. However, neither factor, whether independently or interactively, affected transcription of cardiac Na+, voltage-dependent K+ channels, surface or intracellular Ca2+ channels. Nor were gap junction channels, β-adrenergic receptors or transforming growth factor-β affected.ConclusionThese findings limit the possible roles of gene transcriptional changes in previously reported age-dependent pro-arrhythmic electrophysiologial changes observed in Pgc-1β-/- atria to an altered Ca2+-ATPase (Atp2a2) expression. This directly parallels previously reported arrhythmic mechanism associated with p21-activated kinase type 1 deficiency. This could add to contributions from the direct physiological outcomes of mitochondrial dysfunction, whether through reactive oxygen species (ROS) production or altered Ca2+ homeostasis

    Looking ahead: forecasting and planning for the longer-range future, April 1, 2, and 3, 2005

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring Conference that took place during April 1, 2, and 3, 2005.The conference allowed for many highly esteemed scholars and professionals from a broad range of fields to come together to discuss strategies designed for the 21st century and beyond. The speakers and discussants covered a broad range of subjects including: long-term policy analysis, forecasting for business and investment, the National Intelligence Council Global Trends 2020 report, Europe’s transition from the Marshal plan to the EU, forecasting global transitions, foreign policy planning, and forecasting for defense

    Cardiac Potassium Channels: Physiological Insights for Targeted Therapy.

    Get PDF
    The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K(+) channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K(+) channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them
    • …
    corecore