2,176 research outputs found
Tetragonal tungsten bronze compounds: relaxor vs mixed ferroelectric - dipole glass behavior
We demonstrate that recent experimental data (E. Castel et al J.Phys. Cond.
Mat. {\bf 21} (2009), 452201) on tungsten bronze compound (TBC)
BaPrNdFeNbO can be well explained in our model
predicting a crossover from ferroelectric () to orientational (dipole)
glass (), rather then relaxor, behavior. We show, that since a "classical"
perovskite relaxor like Pb(Mn Nb)O is never a
ferroelectric, the presence of ferroelectric hysteresis loops in TBC shows that
this substance actually transits from ferroelectric to orientational glass
phase with growth. To describe the above crossover theoretically, we use
the simple replica-symmetric solution for disordered Ising model.Comment: 5 two-column pages, 4 figure
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
Dominant g(9/2)^2 neutron configuration in the 4+1 state of 68Zn based on new g factor measurements
The factor of the state in Zn has been remeasured with
improved energy resolution of the detectors used. The value obtained is
consistent with the previous result of a negative factor thus confirming
the dominant neutron nature of the state. In addition, the
accuracy of the factors of the , and states has been
improved an d their lifetimes were well reproduced. New large-scale shell model
calculations based on a Ni core and an model space
yield a theoretical value, . Although the calculated value
is small, it cannot fully explain the experimental value, . The magnitude of the deduced B(E2) of the and
transition is, however, rather well described. These results demonstrate again
the importance of factor measurements for nuclear structure determination s
due to their specific sensitivity to detailed proton and neutron components in
the nuclear wave functions.Comment: 7 pages, 3 figs, submitted to PL
Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma
We present results from three-dimensional ideal magnetohydrodynamic
simulations of unmagnetized dense plasma jet injection into a uniform hot
strongly magnetized plasma, with the aim of providing insight into core fueling
of a tokamak with parameters relevant for ITER and NSTX (National Spherical
Torus Experiment). Unmagnetized dense plasma jet injection is similar to
compact toroid injection but with much higher plasma density and total mass,
and consequently lower required injection velocity. Mass deposition of the jet
into the background appears to be facilitated via magnetic reconnection along
the jet's trailing edge. The penetration depth of the plasma jet into the
background plasma is mostly dependent on the jet's initial kinetic energy, and
a key requirement for spatially localized mass deposition is for the jet's
slowing-down time to be less than the time for the perturbed background
magnetic flux to relax due to magnetic reconnection. This work suggests that
more accurate treatment of reconnection is needed to fully model this problem.
Parameters for unmagnetized dense plasma jet injection are identified for
localized core deposition as well as edge localized mode (ELM) pacing
applications in ITER and NSTX-relevant regimes.Comment: 16 pages, 8 figures and 2 tables; accepted by Nuclear Fusion (May 11,
2011
Ecological study of aquatic midges and some related insects with special reference to feeding habits
Die Schweiz ist ein reiches Land. Sie verfügt über viele Millionäre. Der große Reichtum konzentriert sich auf wenige Familien und Personen. In der Schweiz leben aber auch eine halbe Million der Bevölkerung (7,5 Mio.) in Haushalten von Erwerbstätigen, die weniger als das Existenzminimum verdienen. Über 200‘000 Personen sind auf Sozialhilfe angewiesen. Bei den Vermögen und den verfügbaren Einkommen hat sich in den letzten Jahren die Kluft zwischen den obersten und untersten zehn Prozent verschärft. Die Zunahme der sozialen Ungleichheit erhöht die soziale Brisanz, was mehr zu ergründen ist. Die soziale Differenzierung dokumentiert Prozesse der Globalisierung. Sie reproduziert und spezifiziert alte soziale Ungleichheiten. Wichtig ist, dass die Soziale Arbeit das thematisiert und weiter theoretisiert
Lessons from the operation of the "Penning-Fluorescent" TPC and prospects
We have recently reported the development of a new type of high-pressure
Xenon time projection chamber operated with an ultra-low diffusion mixture and
that simultaneously displays Penning effect and fluorescence in the
near-visible region (300 nm). The concept, dubbed `Penning-Fluorescent' TPC,
allows the simultaneous reconstruction of primary charge and scintillation with
high topological and calorimetric fidelity
TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection
Dark Matter experiments are recently focusing their detection techniques in
low-mass WIMPs, which requires the use of light elements and low energy
threshold. In this context, we present the TREX-DM experiment, a low background
Micromegas-based TPC for low-mass WIMP detection. Its main goal is the
operation of an active detection mass 0.300 kg, with an energy threshold
below 0.4 keVee and fully built with previously selected radiopure materials.
This article describes the actual setup, the first results of the comissioning
in Ar+2\%iCH at 1.2 bar and the future updates for a possible
physics run at the Canfranc Underground Laboratory in 2016. A first background
model is also presented, based on Geant4 simulations and a muon/electron
discrimination method. In a conservative scenario, TREX-DM could be sensitive
to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for
improvement with a neutron/electron discrimination method or the use of other
light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare
Event Detectio
Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter
As part of the T-REX project, a number of R&D and prototyping activities have
been carried out during the last years to explore the applicability of
Micromegas-read gaseous TPCs in rare event searches like double beta decay
(DBD), axion research and low-mass WIMP searches. While in the companion paper
we focus on DBD, in this paper we focus on the results regarding the search for
dark matter candidates, both axions and WIMPs. Small ultra-low background
Micromegas detectors are used to image the x-ray signal expected in axion
helioscopes like CAST at CERN. Background levels as low as
c keVcms have already been achieved in CAST while values
down to c keVcms have been obtained in a
test bench placed underground in the Laboratorio Subterr\'aneo de Canfranc.
Prospects to consolidate and further reduce these values down to
c keVcmswill be described. Such detectors, placed at the
focal point of x-ray telescopes in the future IAXO experiment, would allow for
10 better signal-to-noise ratio than CAST, and search for solar axions with
down to few 10 GeV, well into unexplored axion
parameter space. In addition, a scaled-up version of these TPCs, properly
shielded and placed underground, can be competitive in the search for low-mass
WIMPs. The TREX-DM prototype, with 0.300 kg of Ar at 10 bar, or
alternatively 0.160 kg of Ne at 10 bar, and energy threshold well below 1
keV, has been built to test this concept. We will describe the main technical
solutions developed, as well as the results from the commissioning phase on
surface. The anticipated sensitivity of this technique might reach
cm for low mass ( GeV) WIMPs, well beyond current
experimental limits in this mass range.Comment: Published in JCAP. New version with erratum incorporated (new figure
14
- …
