1,729 research outputs found

    Dominant g(9/2)^2 neutron configuration in the 4+1 state of 68Zn based on new g factor measurements

    Full text link
    The gg factor of the 41+4_1^+ state in 68^{68}Zn has been remeasured with improved energy resolution of the detectors used. The value obtained is consistent with the previous result of a negative gg factor thus confirming the dominant 0g9/20g_{9/2} neutron nature of the 41+4_1^+ state. In addition, the accuracy of the gg factors of the 21+2_1^+, 22+2_2^+ and 31−3_1^- states has been improved an d their lifetimes were well reproduced. New large-scale shell model calculations based on a 56^{56}Ni core and an 0f5/21pg9/20f_{5/2}1pg_{9/2} model space yield a theoretical value, g(41+)=+0.008g(4_1^+) = +0.008. Although the calculated value is small, it cannot fully explain the experimental value, g(41+)=−0.37(17)g(4_1^+) = -0.37(17). The magnitude of the deduced B(E2) of the 41+4_1^+ and 21+2_1^+ transition is, however, rather well described. These results demonstrate again the importance of gg factor measurements for nuclear structure determination s due to their specific sensitivity to detailed proton and neutron components in the nuclear wave functions.Comment: 7 pages, 3 figs, submitted to PL

    Tetragonal tungsten bronze compounds: relaxor vs mixed ferroelectric - dipole glass behavior

    Full text link
    We demonstrate that recent experimental data (E. Castel et al J.Phys. Cond. Mat. {\bf 21} (2009), 452201) on tungsten bronze compound (TBC) Ba2_2Prx_xNd1−x_{1-x}FeNb4_4O15_{15} can be well explained in our model predicting a crossover from ferroelectric (x=0x=0) to orientational (dipole) glass (x=1x=1), rather then relaxor, behavior. We show, that since a "classical" perovskite relaxor like Pb(Mn1/3_{1/3} Nb2/3_{2/3})O3_3 is never a ferroelectric, the presence of ferroelectric hysteresis loops in TBC shows that this substance actually transits from ferroelectric to orientational glass phase with xx growth. To describe the above crossover theoretically, we use the simple replica-symmetric solution for disordered Ising model.Comment: 5 two-column pages, 4 figure

    Modeling and performance evaluation of the eICIC/ABS in H-CRAN

    Get PDF
    International audienceIn this paper, we propose mathematical models to evaluate the performance of the interference remediation technique eICIC/ABS (enhanced Inter-Cell Interference Coordination / Almost Blank Sub-frame) in the context of Heterogeneous Cloud based Radio Access Networks (H-CRAN) architecture and 5G networks. The objective is to propose a dynamic resource management tool to ease decisions on the activation/deactivation of micro-cells as well as on the distributions of subframes among macro and micro cells. First, we propose a Markov chain based model that fits the behavior of the considered scheme and allows the analysis of the cell throughput according to traffic load, radio conditions and the distribution of available resources among macro and micro cells. Then, we propose an approximation model with a closed form formula. The two models are validated and evaluated in terms of accuracy and computation time. Numerical results are compared to matlab simulations that reproduce realistic radio conditions. Results show that both models are accurate. However, the closed form approximation is less complex and provides faster results

    High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes

    Full text link
    We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to ∌\sim 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 σ\sigma rms) of these three CTEs are 0.816 and 0.002 (×10−6\times 10^{-6}/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure

    Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas

    Get PDF
    We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk' Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made

    Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter

    Full text link
    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as 0.8×10−60.8\times 10^{-6} c keV−1^{-1}cm−2^{-2}s−1^{-1} have already been achieved in CAST while values down to ∌10−7\sim10^{-7} c keV−1^{-1}cm−2^{-2}s−1^{-1} have been obtained in a test bench placed underground in the Laboratorio Subterr\'aneo de Canfranc. Prospects to consolidate and further reduce these values down to ∌10−8\sim10^{-8} c keV−1^{-1}cm−2^{-2}s−1^{-1}will be described. Such detectors, placed at the focal point of x-ray telescopes in the future IAXO experiment, would allow for 105^5 better signal-to-noise ratio than CAST, and search for solar axions with gaÎłg_{a\gamma} down to few 1012^{12} GeV−1^{-1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with ∌\sim0.300 kg of Ar at 10 bar, or alternatively ∌\sim0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach ∌10−44\sim10^{-44} cm2^2 for low mass (<10<10 GeV) WIMPs, well beyond current experimental limits in this mass range.Comment: Published in JCAP. New version with erratum incorporated (new figure 14

    TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ∌\sim0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2\%iC4_4H10_{10} at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare Event Detectio
    • 

    corecore