1,051 research outputs found

    From Small Talk To Academic Dialogue: An Online Professional Development Course For The English Language Proficiency Standards For Adult Education

    Get PDF
    The purpose of this capstone project was to explore the English Literacy Proficiency (ELP) Standards for Adult Education (AE) (AIR, 2016). I studied the ELP Standards for AE in order to understand how to integrate academic language learning into instruction in order to support adult English language learners in transitioning to careers and postsecondary education. This knowledge was used to design an online professional development course that supported the use and implementation of the standards. The four-week online course engaged participants in course content through integrated discussions, assignments, and materials that utilized a constructivist approach to learning

    Five go to a country house: reflections on developing a residential programme for undergraduate management students.

    Get PDF
    For the academic year 2015-16, a new route was devised for undergraduate students in year three of their four-year Management degree. This route, denoted 'Connect to Business', was designed to allow students to participate in short work placements in SMEs or Third Sector organisations for two-three days per week. These placements were undertaken alongside a focused programme of personal and professional development, and taught project modules in enterprise and business consultancy. In addition, at the start of the Connect to Business year, the students were given the opportunity to take part in a three-day residential module devoted to a range of enterprise and employability topics. The design of this residential drew on lessons learned from our leadership of residential courses for students on summer placements in the Highlands and Islands of Scotland (the ScotGrad Placement Programme) and represented part of our commitment to the embedding of learning from that programme into our own curriculum. The purpose of this paper is to provide a reflective account of the Connect to Business residential programme viewed from both the student and academic perspectives. We include thoughts on programme structure and coverage, benefits realised, and challenges encountered. The points highlighted in this brief paper will be discussed more fully during the conference presentation, and the lessons learned will be discussed. The presentation will include discussion of how the changing learning and employment environment opens up opportunities to offer students new ways of learning and preparing for the world of work

    Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    Full text link
    Previous observations have not been able to exclude the possibility that high temperature active region loops are actually composed of many small scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on \textit{Hinode} we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluctuation level of approximately 15% in an individual pixel. Short-lived impulsive heating events are observed, but they appear to be unrelated to the steady emission that dominates the active region. Furthermore, we find no evidence for warm emission that is spatially correlated with the hot emission, as would be expected if the high temperature loops are the result of impulsive heating. Finally, we also find that intensities in the "moss", the footpoints of high temperature loops, are consistent with steady heating models provided that we account for the local expansion of the loop from the base of the transition region to the corona. In combination, these results provide strong evidence that the heating in the core of an active region is effectively steady, that is, the time between heating events is short relative to the relevant radiative and conductive cooling times.Comment: Minor changes based on the final report from the referee; Movies are available from the first autho

    Crosstalk between salicylic acid signalling and the circadian clock promotes an effective immune response in plants

    Get PDF
    The rotation of Earth creates a cycle of day and night, leading to predictable changes in environmental conditions. The circadian clock synchronizes an organism with these environmental changes and alters their physiology in anticipation. Prediction of the probable timing of pathogen infection enables plants to prime their immune system without wasting resources or sacrificing growth. Here, we explore the relationship between the immune hormone salicylic acid (SA), and the circadian clock in Arabidopsis. We found that SA altered circadian rhythmicity through the SA receptor and master transcriptional coactivator, NPR1. Reciprocally, the circadian clock gates SA-induced transcript levels of NPR1-dependent immune genes. Furthermore, the clock gene CCA1 is essential for SA-induced immunity to the major bacterial plant pathogen Pseudomonas syringae. These results build upon existing studies of the relationship between the circadian clock and SA signalling and how interactions between these systems produce an effective immune response. Understanding how and why the immune response in plants is linked to the circadian clock is crucial in working towards improved crop productivity

    The Temperature and Density Structure of the Solar Corona. I. Observations of the Quiet Sun with the EUV Imaging Spectrometer (EIS) on Hinode

    Full text link
    Measurements of the temperature and density structure of the solar corona provide critical constraints on theories of coronal heating. Unfortunately, the complexity of the solar atmosphere, observational uncertainties, and the limitations of current atomic calculations, particularly those for Fe, all conspire to make this task very difficult. A critical assessment of plasma diagnostics in the corona is essential to making progress on the coronal heating problem. In this paper we present an analysis of temperature and density measurements above the limb in the quiet corona using new observations from the EUV Imaging Spectrometer (EIS) on \textit{Hinode}. By comparing the Si and Fe emission observed with EIS we are able to identify emission lines that yield consistent emission measure distributions. With these data we find that the distribution of temperatures in the quiet corona above the limb is strongly peaked near 1 MK, consistent with previous studies. We also find, however, that there is a tail in the emission measure distribution that extends to higher temperatures. EIS density measurements from several density sensitive line ratios are found to be generally consistent with each other and with previous measurements in the quiet corona. Our analysis, however, also indicates that a significant fraction of the weaker emission lines observed in the EIS wavelength ranges cannot be understood with current atomic data.Comment: Submitted to Ap

    Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    Full text link
    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high temperature active region loops close to equilibrium. In this paper, we couple observations of Active Region 10955 made with XRT and EIS on \textit{Hinode} to test a simple steady heating model. First we calculate the differential emission measure of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3\,MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 << Log T << 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.Comment: 16 pages, 9 figures, accepted to Ap

    2-Hydr­oxy-10-propargylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione monohydrate

    Get PDF
    The title compound, C15H14N2O3·H2O, consists of a benzodiazepinedione system fused to a pyrrole system. The seven-membered ring adopts a boat-shaped conformation (with the methine C atom as the prow); the five-membered ring adopts an enveloped-shaped conformation (with the hydr­oxy-bearing C atom as the flap). In the crystal, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds into sheets parallel to (102). In addition, Cacetyl­inic—H⋯O hydrogen bonds occur

    Flare energetics

    Get PDF
    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested

    2-Hydr­oxy-10-phenacyl­pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

    Get PDF
    The title compound, C20H18N2O4, consists of a benzodiazepinedione system fused to a pyrrole system. The seven-membered ring adopts a boat-shaped conformation (with the methine C atom as the prow); the five-membered ring adopts an enveloped-shaped conformation (with the hydr­oxy-bearing C atom as the flap). In the crystal, the hydr­oxy group is hydrogen bonded to the carbonyl O atom of an adjacent mol­ecule, generating a zigzag chain

    A nanoflare model for active region radiance: application of artificial neural networks

    Full text link
    Context. Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission. Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater than 2, is it considered possible that nanoflares contribute significantly to the energy input. Aims. Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining the power law exponent of the nanoflare energy distribution. Methods. A simple nanoflare model based on three key parameters (the flare rate, the flare duration time, and the power law exponent of the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si iii, observed by SUMER in the corona of an active region as it rotates around the east limb of the Sun. Light curve pattern recognition by an Artificial Neural Network (ANN) scheme is used to determine the values. Results. The power law exponents, alpha 2.8, 2.8, and 2.6 for Fe XIX, Ca XIII, and Si iii respectively. Conclusions. The light curve simulations imply a power law exponent greater than the critical value of 2 for all ion species. This implies that if the energy of flare-like events is extrapolated to low energies, nanoflares could provide a significant contribution to the heating of active region coronae.Comment: 4 pages, 5 figure
    corecore