298 research outputs found

    Radio-Frequency Spectroscopy of Ultracold Fermions

    Full text link
    Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.Comment: 6 pages, 6 figure

    Elastic and inelastic collisions of 6Li in magnetic and optical traps

    Full text link
    We use a full coupled channels method to calculate collisional properties of magnetically or optically trapped ultracold 6Li. The magnetic field dependence of the s-wave scattering lengths of several mixtures of hyperfine states are determined, as are the decay rates due to exchange collisions. In one case, we find Feshbach resonances at B=0.08 T and B=1.98 T. We show that the exact coupled channels calculation is well approximated over the entire range of magnetic fields by a simple analytical calculation.Comment: 4 pages revtex including 4 figures, submitted to PR

    Optical excitations in a non-ideal Bose gas

    Full text link
    Optical excitations in a Bose gas are demonstrated to be very sensitive to many-body effects. At low temperature the momentum relaxation is provided by momentum exchange collisions, rather than by elastic collisions. A collective excitation mode forms, which in a Boltzmann gas is manifest in a collision shift and dramatic narrowing of spectral lines. In the BEC state, each spectral line splits into two components. The doubling of the optical excitations results from the physics analogous to that of the second sound. We present a theory of the line doubling, and calculate the oscillator strengths and linewidth.Comment: 5 pages, 3 eps figure

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove

    Structure and stability of bosonic clouds: alkali atoms with negative scattering length

    Full text link
    We investigate the form and stability of a cloud of atoms confined in a harmonic trap when the scattering length is negative. We find that, besides the known low density metastable solution, a new branch of Bose condensate appears at higher density when non locality effects in the attractive part are taken into account. The transition between the two classes of solutions as a function of the number NN of atoms can be either sharp or smooth according to the strength and range of the attractive interaction. Use of tight traps is favorable for investigating the evolution of the system as the strength of the effective interaction increases with NN.Comment: 11 pages, Latex, 2 figures, to be published in Phys. Rev.

    Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products

    Get PDF
    A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO-based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3-deoxyglucosone) were measured in EO- and non-EO-treated fluids. Glyoxal and methylglyoxal concentrations increased 26- and 11-fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209- and 353-fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible

    Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen

    Get PDF
    We have observed the cold collision frequency shift of the 1S-2S transition in trapped spin-polarized atomic hydrogen. We find Δν1S2S=3.8(8)×1010nHzcm3\Delta \nu_{1S-2S} = -3.8(8)\times 10^{-10} n Hz cm^3, where nn is the sample density. From this we derive the 1S-2S s-wave triplet scattering length, a1S2S=1.4(3)a_{1S-2S}=-1.4(3) nm, which is in fair agreement with a recent calculation. The shift provides a valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures, ReVTeX. Updated connection of our measurement to theoretical wor

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Influence of nearly resonant light on the scattering length in low-temperature atomic gases

    Get PDF
    We develop the idea of manipulating the scattering length aa in low-temperature atomic gases by using nearly resonant light. As found, if the incident light is close to resonance with one of the bound pp levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting atoms to this level can significantly change the value and even reverse the sign of aa. The decay of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our calculations show the feasibility of optical manipulations of trapped Bose condensates through a light-induced change in the mean field interaction between atoms, which is illustrated for 7^7Li.Comment: 12 pages, 1 Postscript figur
    corecore