150 research outputs found

    Robustness in Interaction Systems

    Full text link
    We treat the effect of absence/failure of ports or components on properties of component-based systems. We do so in the framework of interaction systems, a formalism for component-based systems that strictly separates the issues of local behavior and interaction, for which ideas to establish properties of systems where developed. We propose to adapt these ideas to analyze how the properties behave under absence or failure of certain components or merely some ports of components. We demonstrate our approach for the properties local and global deadlock-freedom as well as liveness and local progress

    RiskStructures : A Design Algebra for Risk-Aware Machines

    Get PDF
    Machines, such as mobile robots and delivery drones, incorporate controllers responsible for a task while handling risk (e.g. anticipating and mitigating hazards; and preventing and alleviating accidents). We refer to machines with this capability as risk-aware machines. Risk awareness includes robustness and resilience, and complicates monitoring (i.e., introspection, sensing, prediction), decision making, and control. From an engineering perspective, risk awareness adds a range of dependability requirements to system assurance. Such assurance mandates a correct-by-construction approach to controller design, based on mathematical theory. We introduce RiskStructures, an algebraic framework for risk modelling intended to support the design of safety controllers for risk-aware machines. Using the concept of a risk factor as a modelling primitive, this framework provides facilities to construct, examine, and assure these controllers. We prove desirable algebraic properties of these facilities, and demonstrate their applicability by using them to specify key aspects of safety controllers for risk-aware automated driving and collaborative robots
    corecore