428 research outputs found

    Infrared dust emission in the outer disk of M51

    Get PDF
    We examine faint infrared emission features detected in Spitzer Space Telescope images of M51, which are associated with atomic hydrogen in the outer disk and tidal tail at R greater than R_25 (4.9', ~14 kpc at d=9.6 Mpc). The infrared colors of these features are consistent with the colors of dust associated with star formation in the bright disk. However, the star formation efficiency (as a ratio of star formation rate to neutral gas mass) implied in the outer disk is lower than that in the bright disk of M51 by an order of magnitude, assuming a similar relationship between infrared emission and star formation rate in the inner and outer disks.Comment: 13 pages in manuscript form, 2 figures; download PDF of manuscript with original-resolution Figure 1 at http://www.eg.bucknell.edu/physics/thornley/thornleym51.pd

    Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil.

    Get PDF
    Ammonia volatilization is a major cause of nitrogen loss from surface applied urea. While all top dressed ammonia and ammonium-based fertilizers can be volatized, the potential is greatest with urea and fluid containing urea. This laboratory study compared the effect of four different urea-zeolite-acid sulphate soil mixtures on NH3 volatilization and, soil exchangeable NH4 and available NO3 contents of an acid soil with surface-applied urea without additives. The soil used in the study was a sandy loam Typic Paleudults (Nyalau Series). The mixtures significantly minimized NH3 loss by 6 to 15% compared to urea alone. These treatments also significantly increased soil exchangeable NH4 and available NO3 contents compared to urea without additives. The increase in the formation of NH4+ over NH3 and the temporary decrease in soil pH retarded urea hydrolysis at the microsite immediately around the fertilizer. Surface applied urea fertilizer efficiency could be increased by mixing it with zeolite and acid sulphate soil

    Molecular Gas in Candidate Double Barred Galaxies III. A Lack of Molecular Gas?

    Full text link
    Most models of double-barred galaxies suggest that a molecular gas component is crucial for maintaining long-lived nuclear bars. We have undertaken a CO survey in an attempt to determine the gas content of these systems and to locate double barred galaxies with strong CO emission that could be candidates for high resolution mapping. We observed 10 galaxies in CO J=2-1 and J=3-2 and did not detect any galaxies that had not already been detected in previous CO surveys. We preferentially detect emission from galaxies containing some form of nuclear activity. Simulations of these galaxies require that they contain 2% to 10% gas by mass in order to maintain long-lived nuclear bars. The fluxes for the galaxies for which we have detections suggest that the gas mass fraction is in agreement with these models requirements. The lack of emission in the other galaxies suggests that they contain as little as 7 x 10^6 solar masses of molecular material which corresponds to < 0.1% gas by mass. This result combined with the wide variety of CO distributions observed in double barred galaxies suggests the need for models of double-barred galaxies that do not require a large, well ordered molecular gas component.Comment: 17 pages (3 figures embedded on pg 17). To appear in the March 10 issue of the Astrophysical Journa

    Molecular Gas in Elliptical Galaxies: Distribution and Kinematics

    Full text link
    I present interferometric images (approx. 7" resolution) of CO emission in five elliptical galaxies and nondetections in two others. These data double the number of elliptical galaxies whose CO emission has been fully mapped. The sample galaxies have 10^8 to 5x10^9 solar masses of molecular gas distributed in mostly symmetric rotating disks with diameters of 2 to 12 kpc. Four out of the five molecular disks show remarkable alignment with the optical major axes of their host galaxies. The molecular masses are a few percent of the total dynamical masses which are implied if the gas is on circular orbits. If the molecular gas forms stars, it will make rotationally supported stellar disks which will be very similar in character to the stellar disks now known to be present in many ellipticals. Comparison of stellar kinematics to gas kinematics in NGC 4476 implies that the molecular gas did not come from internal stellar mass loss because the specific angular momentum of the gas is about three times larger than that of the stars.Comment: 47 pages, 6 tables, 27 figures. Accepted by AJ, scheduled for August 200

    Molecular gas in nearby powerful radio galaxies

    Get PDF
    We report the detection of CO(1-0) and CO(2-1) emission from the central region of nearby 3CR radio galaxies (z<< 0.03). Out of 21 galaxies, 8 have been detected in, at least, one of the two CO transitions. The total molecular gas content is below 109^9 \msun. Their individual CO emission exhibit, for 5 cases, a double-horned line profile that is characteristic of an inclined rotating disk with a central depression at the rising part of its rotation curve. The inferred disk or ring distributions of the molecular gas is consistent with the observed presence of dust disks or rings detected optically in the cores of the galaxies. We reason that if their gas originates from the mergers of two gas-rich disk galaxies, as has been invoked to explain the molecular gas in other radio galaxies, then these galaxies must have merged a long time ago (few Gyr or more) but their remnant elliptical galaxies only recently (last 107^7 years or less) become active radio galaxies. Instead, we argue the the cannibalism of gas-rich galaxies provide a simpler explanation for the origin of molecular gas in the elliptical hosts of radio galaxies (Lim et al. 2000). Given the transient nature of their observed disturbances, these galaxies probably become active in radio soon after the accretion event when sufficient molecular gas agglomerates in their nuclei.Comment: 6 pages, including 2 figures,in "QSO Hosts and Their Environments", ed. I. Marquez, in pres

    A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes

    Get PDF
    Supermassive black holes in giant elliptical galaxies are remarkably faint given their expected accretion rates. This motivates models of radiatively inefficient accretion, due to either ion-electron thermal decoupling, generation of outflows that inhibit accretion, or settling of gas to a gravitationally unstable disk that forms stars in preference to feeding the black hole. The latter model predicts the presence of cold molecular gas in a thin disk around the black hole. Here we report Submillimeter Array observations of the nucleus of the giant elliptical galaxy M87 that probe 230 GHz continuum and CO(J=2--1) line emission. Continuum emission is detected from the nucleus and several knots in the jet, including one that has been undergoing flaring behavior. We estimate a conservative upper limit on the mass of molecular gas within ~100pc and +-400km/s line of sight velocity of the central black hole of ~8x10^6Msun, which includes an allowance for possible systematic errors associated with subtraction of the continuum. Ignoring such errors, we have a 3 sigma sensitivity to about 3x10^6Msun. In fact, the continuum-subtracted spectrum shows weak emission features extending up to 4 sigma above the RMS dispersion of the line-free channels. These may be artifacts of the continuum subtraction process. Alternatively, if they are interpreted as CO emission, then the implied molecular gas mass is ~5x10^6Msun spread out over a velocity range of 700km/s. These constraints on molecular gas mass are close to the predictions of the model of self-gravitating, star-forming accretion disks fed by Bondi accretion (Tan & Blackman 2005).Comment: 10 pages, accepted to ApJ Main Journa

    On the Internal Absorption of Galaxy Clusters

    Full text link
    A study of the cores of galaxy clusters with the Einstein SSS indicated the presence of absorbing material corresponding to 1E+12 Msun of cold cluster gas, possibly resulting from cooling flows. Since this amount of cold gas is not confirmed by observations at other wavelengths, we examined whether this excess absorption is present in the ROSAT PSPC observations of 20 bright galaxy clusters. For 3/4 of the clusters, successful spectral fits were obtained with absorption due only to the Galaxy, and therefore no extra absorption is needed within the clusters, in disagreement with the results from the Einstein SSS data for some of the same clusters. For 1/4 of the clusters, none of our spectral fits was acceptable, suggesting a more complicated cluster medium than the two-temperature and cooling flow models considered here. However, even for these clusters, substantial excess absorption is not indicated.Comment: accepted by the Astrophysical Journa

    Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

    Get PDF
    Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical Journa
    corecore