50 research outputs found

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Simulation of ion density distribution in the gate oxide of MOS structures

    No full text
    In this work, the simulation of ions density distribution evolution within the oxide of MOS structures is performed. This simulation is achieved by solving the partial differential equation (PDE), which governs the motion of the ions in the oxide layer, subject to boundary and initial conditions. Since no closed form analytical solution is available in the literature to solve this important problem, a numerical technique based on Crank-Nicholson method is used. The evolution of ions density distribution is simulated for different values of such parameters as applied electric field and device temperature using BTS technique. The simulation results agree well with the experimental results as well as the previous published result

    Digital differential relay reliability enhancement of power transformer

    No full text
    In this paper, an improvement of digital differential relay reliability for protecting a large power transformer is discussed. First, the Fourier sine and cosine coefficients required for fundamental, second, third and fifth harmonics determination have been calculated using rectangular transfer technique. Then, these harmonics have been used in harmonics restrain and blocking techniques used in differential protection system. Simulation testes have been carried out on a variety of magnetizing conditions (normal aperiodic inrush and over excitation conditions) using Simulink/MATLAB. The obtained results shows that the developed approach provides good discrimination between the magnetizing current and the internal fault curren

    Approche sociologique et sémiotique du consentement éclairé et de la compréhension de l'information lors d'essais cliniques en oncologie.

    No full text
    Rapport final de recherche pour l'INCA dans le cadre du programme "Processus et perspectives de développement de la recherche clinique en cancérologie

    Effects of the position substrate upon the structural behaviour, electrical and optical properties of zinc-oxide films used in solar cells

    No full text
    The preparation by the rf sputtering technique and characterisation of ZnO thin films used as windows in solar cells are described. The electrical behaviour and structural spectra clearly show an important effect of the substrate position with respect to the target. In fact, among all the studied substrate positions, only the samples facing the target are randomly oriented having the mixed orientation (100), (002) and (101). All the others have the c(002)-axis orientation. The scanning electron-microscope observations confirm the X-ray analysis results. The last samples have a resistivity as low as 10-3 [Omega]cm while the randomly-oriented, ones have a large resisivity of about 102-103 [Omega]cm These latter show, in their transmittance characteristics, a slight shift towards higher wavelengths. However, no effect is noticed when the other samples are optically assessed. Consequently, the optical gap is found to be about 3.38 eV for the conducting films and 3.3 eV for the ones having a higher resistivity. The average transmittance in the visible range is around 85-90% for all the samplesZinc oxide X-ray diffraction Electrical properties and measurements Optical properties

    The tin precursors and hydrogen peroxide effects on spray-deposited SnO

    No full text
    The oxide semiconductor compounds such as SnO2, In2O3, ITO, ZnO and others brought about a new attention for the metal-insulator-semiconductor structures as photovoltaic converters because of the high values of transmission and conductivity and the possibility of metal replacement in above-mentioned structures. The characteristics of the solar cells based on these oxide semiconductor compounds can be improved with conductivity increasing of the transparent semiconductor films and that is why the purpose of this paper is obtaining of F-doped tin oxide thin films, preparation of SnO2:F-Si solar cells and studying of their properties. The F-doped tin oxide thin films were prepared by spray pyrolysis technique [1–8]. This method was chosen because of the simplicity of the apparatus and relatively low cost. Aqueous solutions containing 0.1 M (TT, BTT or DTD) and 0.07 M NH4F (in the case of doping with F) have been sprayed by an atomizer on Si or glass substrates, heated up to 420 °C by maintaining the spray liquid volume, the spray time and the pressure of the carrier gas. Spray pyrolysis deposition of transparent and conductive SnO2 is a low-cost and very flexible technique applicable to solar cells. For SnO2, the drawback is that polycrystalline films are only obtained at relatively high deposition temperatures, largely above 450 °C. This constraint may cause damage to the photovoltaic junction. In the present work, it will be demonstrated that the photovoltaic parameters can be influenced by adding small amounts of hydrogen peroxide (H2O2) to the source solution

    Implementation and Validation of Hybrid Control for a DFIG Wind Turbine Using an FPGA Controller Board

    No full text
    In this study, a novel control approach for a doubly-fed induction generator (DFIG) is developed and applied to improve the system’s dynamic response and performance for providing high energy quality while avoiding harmonic accumulations. Because of its ease of implementation, field-oriented control (FOC) is frequently used. This control has great sensitivity to the machine’s parametric variations. For this reason, adaptive Backstepping control (ABC) is capable of preserving almost all of the performance and robustness properties. However, its analytical formulation has a problem. To overcome these disadvantages, the hybrid control (HC) is developed and verified to enable rapid response, complete reference tracking, and appropriate dynamic behavior with a low ripple level. This control is a combination of FOC’s and ABC’s control laws. The prepared control is explored by simulation testing using Matlab/Simulink and practical implementation using an FPGA board with actual turbine settings and a real wind profile of Dakhla City, Morocco. The results of hardware simulation show the efficacy of the HC in terms of speed and robustness, with a total harmonic distortion THD = 0.95, a value of THD that reveals the quality of the energy injected into the grid
    corecore