182 research outputs found

    Effect of a multi-citrus extract-based feed additive on the survival of rainbow trout (Oncorhynchus mykiss) following challenge with Lactococcus garvieae

    Get PDF
    Growing global concerns about antibiotic resistance have generated a considerable interest in the search for alternative environmental-friendly approaches. This study was aimed to assess the antimicrobial activity of a multi-citrus extract-based feed additive (Biocitro®) against some fish pathogens, as well as evaluate its capacity to protect rainbow trout (Oncorhynchus mykiss) to lactococcosis. A broth dilution method was used to determine the minimum inhibitory concentration (MIC) of Biocitro®, and the results showed a strong antibacterial activity against Aeromonas salmonicida, Lactococcus garvieae and Yersinia ruckeri with MIC values of 2.0 µg/mL. Afterwards, rainbow trout juveniles were fed a Biocitro®-enriched diet (750 mg/kg feed) at a daily rate of 1.5% body weight for 4 weeks, then they were challenged with L. garvieae by the cohabitation method. At the end of the experimental period, fish treated with Biocitro® showed significantly (P¿<¿0.001) improved protection against L. garvieae compared to control fish. Although further studies are needed to understand how Biocitro® increases rainbow trout resistance to L. garvieae, this feed additive could be considered as a useful alternative to chemotherapeutic treatment in aquaculture

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    Prioridades de investigación y asignación de recursos en agricultura : el caso Colombiano

    Get PDF
    Reunión: Asignación de recursos para la Investigación Agrícola, 8-10 jun. 1981, Singapore, SGEn IDL-239

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    Compressed Tree Canonization

    Get PDF
    Straight-line (linear) context-free tree (SLT) grammars have been used to compactly represent ordered trees. It is well known that equivalence of SLT grammars is decidable in polynomial time. Here we extend this result and show that isomorphism of unordered trees given as SLT grammars is decidable in polynomial time. The proof constructs a compressed version of the canonical form of the tree represented by the input SLT grammar. The result is generalized to unrooted trees by "re-rooting" the compressed trees in polynomial time. We further show that bisimulation equivalence of unrooted unordered trees represented by SLT grammars is decidable in polynomial time. For non-linear SLT grammars which can have double-exponential compression ratios, we prove that unordered isomorphism is PSPACE-hard and in EXPTIME. The same complexity bounds are shown for bisimulation equivalence
    corecore