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Compressed Tree Canonization

Markus Lohrey1, Sebastian Maneth2, and Fabian Peternek2

1 Universität Siegen, Germany
2 University of Edinburgh, UK

Abstract. Straight-line (linear) context-free tree (SLT) grammars have been used
to compactly represent ordered trees. Equivalence of SLT grammars is decidable
in polynomial time. Here we extend this result and show that isomorphism of
unordered trees given as SLT grammars is decidable in polynomial time. The
result generalizes to isomorphism of unrooted trees and bisimulation equivalence.
For non-linear SLT grammars which can have double-exponential compression
ratios, we prove that unordered isomorphism and bisimulation equivalence are
PSPACE-hard and in EXPTIME.

1 Introduction

Deciding isomorphism between various mathematical objects is an important topic in
theoretical computer science that has led to intriguing open problems like the pre-
cise complexity of the graph isomorphism problem. An example of an isomorphism
problem, where the knowledge seems to be rather complete, is tree isomorphism. Aho,
Hopcroft and Ullman [1, page 84] proved that isomorphism of unordered trees (rooted
or unrooted) can be decided in linear time. An unordered tree is a tree, where the
children of a node are not ordered. The precise complexity of tree isomorphism was
finally settled by Lindell [11], Buss [5], and Jenner et al. [9]: tree isomorphism is
LOGSPACE-complete if the trees are represented by pointer structures [11,9] and ALOG-
TIME-complete if the trees are represented by expressions [5,9]. All these results deal
with trees that are given explicitly (either by an expression or a pointer structure). In
this paper, we deal with the isomorphism problem for trees that are given in a succinct
way. Several succinct encoding schemes for graphs exist in the literature. Galperin and
Wigderson [8] considered graphs that are given by a Boolean circuit for the adjacency
matrix. Subsequent work showed that the complexity of a problem undergoes an expo-
nential jump when going from the standard input representation to the circuit represen-
tation; this phenomenon is known as upgrading, see [7] for more details and references.
Concerning graph isomorphism, it was shown in [7] that its succinct version is PSPACE-
hard, even for very restricted classes of Boolean circuits (DNFs and CNFs).

In this paper, we consider another succinct input representation that has turned out
to be more amenable to efficient algorithms, and, in particular, does not show the up-
grading phenomenon known for Boolean circuits: straight-line context-free grammars,
i.e., context-free grammars that produce a single object. Such grammars have been in-
tensively studied for strings and recently also for trees. Using a straight-line grammar,
repeated patterns in an string or tree can be abbreviated by a nonterminal which can



be used in different contexts. For strings, this idea is known as grammar-based com-
pression [6,12], and it was extended to trees in [4]. In fact this approach can be also
extended to general graphs by using hyperedge replacement graph grammars; the re-
sulting formalism is known as hierarchical graph representation [10].

The main topic of this paper is the isomorphism problem for trees that are succinctly
represented by straight-line context-free tree grammars (ST grammars). An example of
such a grammar contains the productions S → A0(a), Ai(y) → Ai+1(Ai+1(y)) for
0 ≤ i ≤ n − 1, and An(y) → f(y, y) (here y is called a parameter and in general
several parameters may occur in a rule). This grammar produces a full binary tree of
height 2n and hence has 22

n+1 − 1 many nodes. Thus, an ST grammar may produce a
tree, whose size is doubly exponential in the size of the grammar. The reason for this
double exponential blow-up is copying: the parameter y occurs twice in the right-hand
side of the production An(y) → f(y, y). If this is not allowed, i.e., if every parameter
occurs at most once in every right-hand side, then the grammar is a straight-line linear
context-free tree grammar (SLT grammar). The latter generalize dags (directed acyclic
graphs) that allow to share repeated subtrees of a tree, whereas SLT grammars can also
share repeated patterns that are not complete subtrees.

Several algorithmic problems are harder for trees represented by ST grammars than
trees represented by SLT grammars. A good example is the membership problem for
tree automata (PTIME-complete for SLT grammars and PSPACE-complete for ST gram-
mars, see [12, Theorem 39]). A similar situation arises for the isomorphism problem:
we prove that the isomorphism problem for (rooted or unrooted) unordered trees that
are given by SLT grammars (resp., ST grammars) is PTIME-complete (resp., PSPACE-
hard and in EXPTIME). Our polynomial time algorithm for SLT grammars constructs
from a given SLT grammar G a new SLT grammar G′ that produces a canonical repre-
sentation (based on lexicographic ordering of depth-first left-to-right traversals) of the
tree produced byG. For unrooted SLT-compressed trees, we first compute a compressed
representation of the center node of a given SLT-compressed unrooted tree t. Then we
compute an SLT grammar that produces the rooted version of t that is rooted in the
center node. This is also the standard reduction of the unrooted isomorphism problem
to the rooted isomorphism problem in the uncompressed setting, but it requires some
work to carry out this reduction in polynomial time in the SLT-compressed setting.

Our techniques can be also used to show that checking bisimulation equivalence
of trees that are represented by SLT grammars is PTIME-complete. This generalizes
the well-known PTIME-completeness of bisimulation for dags [2]. In this context, it is
interesting to note that bisimulation equivalence for graphs that are given by hierarchical
graph representations is PSPACE-hard and in EXPTIME [3].

Full proofs can be found in the long version [13].

2 Preliminaries

For k ≥ 0 let [k] = {1, . . . , k}. Let Σ be an alphabet. By TΣ we denote the set of all
(ordered, rooted) trees over the alphabet Σ. It is defined recursively as the smallest set
of strings such that if t1, . . . , tk ∈ TΣ and k ≥ 0 then also σ(t1, . . . , tk) ∈ TΣ . For the
tree a() we simply write a. The setD(t) of Dewey addresses of a tree t = σ(t1, . . . , tk)
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is the subset of N∗ defined recursively as {ε} ∪
⋃
i∈[k] i ·D(ti). Thus ε is the root node

of t and u · i is the i-th child of u. For u ∈ D(t), we denote by t[u] ∈ Σ the symbol at u,
i.e., if t = σ(t1, . . . , tk), then t[ε] = σ and t[i · u] = ti[u]. The size of t is |t| = |D(t)|.

A ranked alphabet N is a finite set of symbols each of which equipped with a non-
negative integer, called its “rank”. We write N (k) for the set of symbols in N that have
rank k. For an alphabetΣ and a ranked alphabetN , we denote by TN∪Σ the set of trees
t over N ∪ Σ with the property that if t[u] = A ∈ N (k), then u · i ∈ D(t) if and only
if i ∈ [k]. Thus, if a node is labeled by a ranked symbol, then the rank determines the
number of children of the node. We fix a set Y = {y1, y2, . . . } of parameters, which
are symbols of rank 0. For y1 we also write y. We write TΣ∪N (Y ) for TΣ∪N∪Y . For
trees t, t1, . . . , tk ∈ TΣ∪N (Y ) we denote by t[yj ← tj | j ∈ [k]] the tree obtained from
t by replacing in parallel every occurrence of yj (j ∈ [k]) by tj . A context is a tree in
TΣ∪N ({y}) with exactly one occurrence of y. Let CΣ∪N be the set of all contexts and
let CΣ = CΣ∪N ∩ TΣ({y}). For a context t(y) and a tree t′ we write t[t′] for t[y ← t′].

A context-free tree grammar is a tuple G = (N,Σ, S, P ) where N is a ranked al-
phabet of nonterminal symbols, Σ is an alphabet of terminal symbols with Σ ∩N = ∅,
S ∈ N (0) is the start nonterminal, and P is a finite set of productions of the form
A(y1, . . . , yk) → t where A ∈ N (k), k ≥ 0, and t ∈ TN∪Σ({y1, . . . , yk}). Occa-
sionally, we consider context-free tree grammars without a start nonterminal. Two trees
ξ, ξ′ ∈ TN∪Σ(Y ) are in the one-step derivation relation⇒G induced by G, if ξ has a
subtreeA(t1, . . . , tk) withA ∈ N (k), k ≥ 0 such that ξ′ is obtained from ξ by replacing
this subtree by t[yj ← tj | j ∈ [k]], where A(y1, . . . , yk)→ t is a production in P . The
tree language L(G) produced by G is {t ∈ TΣ | S ⇒∗G t}. The size of the grammar
G is |G| =

∑
(A(y1,...,yk)→t)∈P |t|. The grammar G = (N,Σ, S, P ) is deterministic if

for every A ∈ N there is exactly one production of the form A → t. The grammar G
is acyclic, if there is a linear order < on N such that A < B whenever B occurs in a
tree t with (A → t) ∈ P . A deterministic and acyclic grammar is called straight-line.
Note that |L(G)| = 1 for a straight-line grammar. We denote the unique tree t produced
by the straight-line tree grammar G by val(G). Moreover, for a tree t ∈ TΣ∪N (Y ) we
denote with valG(t) the unique tree from TΣ(Y ) such that t ⇒∗G valG(t). If G is clear
from the context, we simply write val(t) for valG(t). The grammar G is linear if for
every production (A→ t) ∈ P and every y ∈ Y , y occurs at most once in t.

For a straight-line context-free tree grammar (resp., straight-line linear context-free
tree grammar) we say ST grammar (resp.. SLT grammar.) Occasionally, we also con-
sider SLT grammars, where the start nonterminal belongs to N (1), i.e., has rank 1. For
such a 1-SLT grammar G it holds that val(G) ∈ CΣ . Most of this paper is about SLT
grammars, only at the very end of the paper we consider general ST grammars. SLT
grammars generalize rooted node-labelled dags (directed acyclic graph), where the tree
defined by such a dag is obtained by unfolding the dag starting from the root (formally,
the nodes of the tree are the directed paths in the dag that start in the root). A dag can
be viewed as an SLT grammar, where all nonterminals have rank 0 (the nodes of the
dag correspond to the nonterminal of the SLT grammar). Dags are less succinct than
SLT grammars (take the tree fN (a) for N = 2n), which in turn are less succinct than
general ST grammars (take a full binary tree of height 2n).
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In the literature, SLT grammars are usually defined over ranked terminal alphabets.
The proof of the following result from [14] also works for an unranked alphabet Σ.

Lemma 1. One can transform in polynomial time an SLT grammar into an equivalent
SLT grammar, where every nonterminal has rank at most one and each production has
one of the following four types (where σ ∈ Σ and A,B,C,A1, . . . , Ak ∈ N ):
(1) A→ σ(A1, . . . , Ak),
(2) A→ B(C),

(3) A(y)→ σ(A1, . . . , Ai, y, Ai+1, . . . , Ak), or
(4) A(y)→ B(C(y)).

In the following, we will only deal with SLT grammars G having the property from
Lemma 1. For i ∈ [4], we denote withG(i) the SLT grammar (without start nonterminal)
consisting of all productions of G of type (i) from Lemma 1.

A straight-line program (SLP) can be seen as a 1-SLT grammar G = (N,Σ, S, P )
containing only productions of the form A(y) → B(C(y)) and A(y) → σ(y) with
B,C ∈ N and σ ∈ Σ. Thus, G contains ordinary rules of a context-free string gram-
mar in Chomsky normal form (but written as monadic trees). Intuitively, if val(G) =
a1(· · · an(y) · · · ) then G produces the string a1 · · · an and we also write val(G) =
a1 · · · an. For a string w = a1 · · · an and two numbers l, r ∈ [n] with l ≤ r we denote
by w[l, r] the substring alal+1 · · · ar. The following result is well-known, see e.g. [12].

Lemma 2. For a given SLP G and two binary encoded numbers l, r ∈ [|val(G)|] with
l ≤ r one can compute in polynomial time an SLP G′ such that val(G′) = val(G)[l, r].

3 Isomorphism of Rooted Unordered SLT-Compressed Trees

Let us fix an alphabetΣ. For t ∈ TΣ we denote with uo(t) the unordered rooted version
of t. It is the node-labeled directed graph (V,E, λ) where V = D(t) is the set of nodes,
E = {(u, u · i) | i ∈ N, u ∈ N∗, u · i ∈ D(t)} is the edge relation, and λ is the node-
labelling function with λ(u) = t[u]. For an SLT grammar G, we also write valuo(G) for
uo(val(G)).

For reasons that will become clear in a moment we have to restrict in this section to
ranked trees, i.e., trees t ∈ TΣ such that for all u, v ∈ D(t), if t[u] = t[v] then u and
v have the same number of children (nodes with the same label have the same number
of children). For the purpose of deciding the isomorphism problem for unordered SLT-
represented trees this is not a real restriction. Denote for a tree t ∈ TΣ the ranked tree
ranked(t) such that D(t) = D(ranked(t)) and for every u ∈ D(t) with t[u] = σ:
if u has k children in t, then ranked(t)[u] = σk, where σk is a new symbol. Clearly,
uo(s) and uo(t) are isomorphic if and only if uo(ranked(s)) and uo(ranked(t)) are
isomorphic. Moreover, for an SLT grammar G we construct in polynomial time the
SLT grammar ranked(G) obtained from G by changing every production A → t into
A→ ranked(t), where ranked is extended to trees overΣ and nonterminals by defining
ranked(t)[u] = t[u] if t[u] is a nonterminal. Then val(ranked(G)) = ranked(val(G))
holds. Hence, in the following we will only consider ranked trees, and all SLT grammars
will produce ranked trees as well.

For a tree t ∈ TΣ we denote by dflr(t) ∈ Σ∗ its depth-first left-to-right traversal
string. It is defined as dflr(σ(t1, . . . , tk)) = σ dflr(t1) · · · dflr(tk) for σ ∈ Σ, k ≥ 0,
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and t1, . . . , tk ∈ TΣ . Note that for ranked trees s and t it holds that: dflr(s) = dflr(t) if
and only if s = t. This is the reason for restricting to ranked trees: for unranked trees
this equivalence fails. For instance, dflr((a(a(a))) = a3 = dflr(a(a, a)).

Let <Σ be an order on Σ; it induces the length-lexicographical ordering <lex on
Σ by u <lex v iff (i) |u| < |v| or (ii) |u| = |v| and there exist p, u′, v′ ∈ Σ∗ and
a, b ∈ Σ with a <Σ b, u = pau′, and v = pbv′. We extend <llex to TΣ by s <llex t iff
dflr(s) <llex dflr(t).

Statement (1) in the following lemma was shown in [4] by computing from G,H in
polynomial time SLPsG′, H ′ with val(G′) = dflr(val(G)) and val(H ′) = dflr(val(H)).
Equivalence of SLPs can be decided in polynomial time (this result was independently
shown by Plandowski, Hirshfeld, Jerrum, Moller, and Mehlhorn, Sundar, Uhrig, see
[12] for references). For statement (2) one can do binary search to find the first position
where the string val(G′) and val(H ′) differ.

Lemma 3. Let G,H be SLT grammars. It is decidable in polynomial time whether or
not (1) val(G) <llex val(H) and (2) whether or not val(G) = val(H).

For a tree t ∈ TΣ we define its canon canon(t) as the smallest tree s w.r.t. <llex such
that uo(s) is isomorphic to uo(t). In order to determine canon(t) for t = σ(t1, . . . , tk)
let ci = canon(ti) for i ∈ [k] and let ci1 ≤llex ci2 ≤llex . . . ≤llex cik be the length-
lexicographically ordered list of canons c1, . . . , ck. Then canon(t) = σ(ci1 , . . . , cin).
The following lemma can be easily shown by an induction on the tree structure:

Lemma 4. Let s, t ∈ TΣ . Then uo(s) is isomorphic to uo(t) iff canon(s) = canon(t).

In the following, we denote a tree A1(A2(· · ·An(t) · · · )), where A1, A2, . . . , An are
unary nonterminals with A1A2 · · ·An(t).

Theorem 5. From a given SLT grammar G one can construct in polynomial time an
SLT grammar G′ such that val(G′) = canon(val(G)).

Proof. Let G = (N,Σ, S, P ). We assume that G contains no distinct nonterminals
A1, A2 ∈ N (0) such that valG(A1) = valG(A2). This is justified because we can test
valG(A1) = valG(A2) in polynomial time by Lemma 3 (and replace A2 by A1 in G in
such a case). We will add polynomially many new nonterminals to G and change the
productions for nonterminals from N (0) such that for the resulting SLT grammar G′:
valG′(Z) = canon(valG(Z)) for every Z ∈ N (0).

Consider a nonterminal Z ∈ N (0) and let M be the set of all nonterminals in
G that can be reached from Z. By induction, we can assume that G already satisfies
valG(A) = canon(valG(A)) for every A ∈M (0) \ {Z}. We distinguish two cases.
Case (i). Z is of type (1) from Lemma 1, i.e., has a production Z → σ(A1, . . . , Ak).
Using Lemma 3 we construct an ordering i1, . . . , ik of [k] such that valG(Ai1) ≤llex

valG(Ai2) ≤llex · · · ≤llex valG(Aik). We obtain G′ by replacing the production Z →
σ(A1, . . . , Ak) by Z → σ(Ai1 , . . . , Aik) and get valG′(Z) = canon(valG(Z)).
Case (ii). Z is of type (2), i.e., has a production Z → B(A). Let {S1, . . . , Sm} =
M (0) \{Z} be an ordering such that valG(S1) <llex valG(S2) <llex · · · <llex valG(Sm).
Note that A is one of these Si. The sequence S1, S2, . . . , Sm partitions the set of all
trees t in TΣ into intervals I0, I1, . . . , Im with
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– Ii = {t ∈ TΣ | valH(Si) ≤llex t <llex valH(Si+1)} for 1 ≤ i ≤ m− 1,
– I0 = {t ∈ TΣ | t <llex valH(S1)}, and Im = {t ∈ TΣ | valH(Sm) ≤llex t}.

Consider the maximal G(4)-derivation B(A) ⇒∗G(4) B1B2 · · ·BN (A) starting from
B(A), where Bi is a type-(3) nonterminal. Clearly, the number N might be of expo-
nential size, but the set {B1, . . . , BN} can be easily constructed. In order to construct
an SLT for canon(valG(Z)), it remains to reorder the arguments in right-hand sides of
the type-(3) nonterminals Bi. The problem is of course that different occurrences of a
type-(3) nonterminal in the sequence B1B2 · · ·BN have to be reordered in a different
way. But we will show that the sequence B1B2 · · ·BN can be split into m + 1 blocks
such that all occurrences of a type-(3) nonterminal in one of these blocks have to be
reordered in the same way.

Let tk = valG(BkBk+1 · · ·BN (A)) for k ∈ [N ] and tN+1 = valG(A). Note that
t1 = valG(Z) >llex valG(Sm) and that tk+1 <llex tk for all k. For i ∈ [m] let ki be the
maximal position k ≤ N +1 such that tk ≥llex valG(Si). Since t1 ≥llex valG(Sm) ≥llex

valG(Si) this position is well defined. Note that if A = Si, then ki = ki−1 = · · · =
k1 = N +1. For every 0 ≤ i ≤ m, the interval [ki+1+1, ki] is the set of all k such that
valG(tk) ∈ Ii. Here we set km+1 = 0 and k0 = N+1. Clearly, the interval [ki+1+1, ki]
might be empty. The positions k0, . . . , km can be computed in polynomial time using
binary search combined with Lemma 3. To apply the latter, note that for a given k we
can compute in polynomial time an SLT grammar for the tree tk using Lemma 2 for the
SLP consisting of all type-(4) productions that are used to derive B1B2 · · ·BN .

We now factorize the string B1B2 · · ·BN as B1B2 · · ·BN = umum−1 · · ·u0,
where um = B1 · · ·Bkm−1 and ui = Bki+1

· · ·Bki−1 for 0 ≤ i ≤ m−1. By Lemma 2
we can compute in polynomial time an SLP Gi for the string ui. For the further consid-
eration, we view Gi as a 1-SLT grammar consisting only of type-(4) productions. Note
that val(Gi) is a linear tree, where every node is labelled with a type-(3) nonterminal.
We now add reordered versions of type-(3) productions to Gi. Consider a type-(3) pro-
duction (C(y) → σ(A1, . . . , Aj , y, Aj+1, . . . , Ak)) ∈ P where C ∈ {B1, . . . , BN}.
We add to Gi the type-(3) production C(y) → σ(Aj1 , . . . , Ajν , y, Ajν+1

, . . . , Ajk),
where {j1, . . . , jk} = [k] and 0 ≤ ν ≤ k are chosen such that

(1) valG(Aj1) ≤llex valG(Aj2) ≤llex · · · ≤llex valG(Ajk) and
(2) valG(Ajν ) ≤llex valG(Si) <llex valG(Ajν+1

).

Note that if ν = k then condition (2) states that valG(Ajk) ≤llex valG(Si), and if ν = 0
then it states that valG(Si) <llex valG(Aj1). Also note that condition (2) ensures that for
every tree t ∈ Ii: valG(Ajν ) ≤llex t <llex valG(Ajν+1

). Hence, valG(σ(Aj1 , . . . , Ajν , t,
Ajν+1

, . . . , Ajk)) is a canon. The crucial observation now is that the above factorization
umum−1 · · ·u0 of B1B2 · · ·BN was defined in such a way that for every occurrence
of a type-(3) nonterminal C(y) in ui, the parameter y will be substituted by a tree from
Ii during the derivation from Z to valG(Z). Hence, we reorder the arguments in the
right-hand sides of nonterminal occurrences in ui in the correct way to obtain a canon.

We now rename the nonterminals in the SLT grammars Gi (which are now of type-
(3) and type-(4)) so that the nonterminal sets of G,G0, . . . , Gm are pairwise disjoint.
Let Xi(y) be the start nonterminal of Gi after the renaming. Then we add to the current
SLT grammar G the union of all the Gi, and replace the production Z → B(A) by
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Z → XmXm−1 · · ·X0(A). The construction implies that valG′(Z) = canon(valG(Z))
for the resulting grammar G′.

It remains to argue that the above construction can be carried out in polynomial
time. All steps only need polynomial time in the size of the current SLT grammar.
Hence, it suffices to show that the size of the SLT grammar is polynomially bounded.
The algorithm is divided into |N (0)| many phases, where in each phase it enforces
valG′(Z) = canon(valG(Z)) for a single nonterminal Z. Consider a single phase,
where valG′(Z) = canon(valG(Z)) is enforced for a nonterminal Z. In this phase,
we (i) change the production for Z and (ii) add new type-(3) and type-(4) productions
to G (the union of the Gi above). But the number of these new productions is polyno-
mially bounded in the size of the initial SLT grammar (the one before the first phase),
because the nonterminals introduced in earlier phases are not relevant for the current
phase. This implies that the additive size increase in each phase is bounded polynomi-
ally in the size of the initial grammar. ut

Corollary 6. The problem of deciding whether valuo(G1) and valuo(G2) are isomor-
phic for given SLT grammars G1 and G2 is PTIME-complete

Proof. Membership in PTIME follows immediately from Lemma 3, Lemma 4, and The-
orem 5. Moreover, PTIME-hardness already holds for dags, i.e., SLT grammars where
all nonterminals have rank 0, as shown in [15]. ut

4 Isomorphism of Unrooted Unordered SLT-Compressed Trees

In this section we show isomorphism for unrooted unordered trees represented by SLT
grammars can be solved in polynomial time. An unrooted unordered tree t over Σ can
be seen as a node-labeled (undirected) graph t = (V,E, λ), where E ⊆ V × V is
symmetric and λ : V → Σ. Let s = (V,E, λ) be a rooted unordered tree. The tree
ur(s) = (V,E ∪ E−1, λ) is the unrooted version of s. An unrooted unordered tree t
can be represented by an SLT grammar G by forgetting the order and root information
present in G. Let valur,uo(G) = ur(uo(val(G))).

Let t = (V,E, λ) be an unordered unrooted tree. For a node v ∈ V we define the
eccentricity ecct(v) = maxu∈V δt(u, v) and the diameter �(t) = maxv∈V ecct(v),
where δt(u, v) denotes the distance from u to v (i.e., the number of edges on the path
from u to v in t). A node u of t is called center node of t if for all leaves v of t: δt(u, v) ≤
(�(s) + 1)/2. Let center(t) be the set of all center nodes of t. One can compute the
center nodes by deleting all leaves of the tree and iterating this step, until the current tree
consists of at most two nodes. These are the center nodes of t. In particular, t has either
one or two center nodes. Another characterization of center nodes that is important for
our algorithm is via longest paths. Let p = (v0, v1, . . . , vn) be a longest simple path in
t, i.e., n = �(t). Then the middle points vbn/2c and vdn/2e (which are identical if n is
even) are the center nodes of t and are independent of the concrete longest path p.

Note that there are two center nodes if and only if �(t) is odd. Since our con-
structions are simpler if a unique center node exists, we first make sure that �(t) is
even. Let # be a new symbol not in Σ. For an unrooted unordered tree t we de-
note by even(t) the tree where every pair of edge (u, v), (v, u) is replaced by the
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edges (u, v′), (v′, v), (v, v′), (v′, u), where v′ is a new node labelled #. Then for an
SLT grammar G = (N,Σ,P, S) we let even(G) = (N,Σ ∪ {#}, P ′, S) be the SLT
grammar where P ′ is obtained from P by replacing every subtree σ(t1, . . . , tk) with
σ ∈ Σ, k ≥ 1, in a right-hand side by the subtree σ(#(t1), . . . ,#(tk)). Observe that
(i) valur,uo(even(G)) = even(valur,uo(G)), (ii) �(even(t)) = 2 · �(t) is even, i.e.,
even(t) has only one center node, and (iii) trees t and s are isomorphic if and only if
even(t) and even(s) are isomorphic. Since even(G) can be constructed in polynomial
time, we assume in the following that every SLT grammar produces a tree with a unique
center node. For such a tree t we denote with center(t) its unique center node.

Let u ∈ V . The rooted version root(t, u) of t with root node u is root(t, u) =
(V,E′, λ), where E′ = {(v, v′) ∈ E | δt(u, v) < δt(u, v

′)}. Two unrooted un-
ordered trees t1, t2 of even diameter are isomorphic iff root(t1, center(t1)) is iso-
morphic to root(t2, center(t2)). Thus, we can solve in polynomial time the isomor-
phism problem for unrooted unordered trees represented by SLT grammars G1, G2 by
(i) computing for i ∈ {1, 2} in polynomial time a compressed representation ũi of
ui = center(valur,uo(Gi)) (Section 4.1), (ii) computing for i ∈ {1, 2} in polynomial
time an SLT grammarG′i such that valuo(G

′
i) = root(valur,uo(Gi), ui) (Section 4.2) and

(iii) testing in polynomial time if valuo(G
′
1) is isomorphic to valuo(G

′
2) (Corollary 6).

4.1 Finding Center Nodes

Let G = (N,Σ, S, P ) be an SLT grammar. A G-compressed path p is a string of pairs
p = (A1, u1) · · · (An, un) such that for all i ∈ [n], Ai ∈ N , A1 = S, ui ∈ D(ti) is a
Dewey address in ti where (Ai → ti) ∈ P , ti[ui] = Ai+1 for i < n, and ti[un] ∈ Σ.
If we omit the condition ti[un] ∈ Σ, then p is a partial G-compressed path. Note that
by definition, n ≤ |N |. A partial G-compressed path uniquely represents one partic-
ular node in the derivation tree of G, and a G-compressed path represents a leaf of
the derivation tree and hence a node of val(G). We denote this node by valG(p). The
concatenation u1, u2, . . . , un of the Dewey addresses is denoted by u(p).

For a context t(y) ∈ CΣ we define ecc(t) = ecct(y) (recall that in a context there
is a unique occurrence of the parameter y) and rty(t) = δt(ε, y) (the distance from the
root to the parameter y). For a tree s ∈ TΣ we denote with h(s) its height. We extend
these notions to contexts t ∈ CΣ∪N and trees s ∈ TΣ∪N by ecc(t) = ecc(valG(t)),
rty(t) = rty(valG(t)), and h(s) = h(valG(s)). Eccentricity, distance from root to
y, and height can be computed in polynomial time for SLT-represented trees bottom-
up. To do so, observe that for contexts t(y), t′(y) ∈ CΣ∪N and a tree s ∈ TΣ∪N :
rty(t[t′]) = rty(t) + rty(t′), ecc(t[t′]) = max{ecc(t′), ecc(t) + rty(t′)}, and h(t[s]) =
max{h(s), rty(t) + h(s)}. Similarly, for t(y) = σ(s1, . . . si, y, si+1, . . . , sk) ∈ CΣ∪N
and s = σ(s1, . . . , sk) ∈ TΣ∪N : rty(t) = 1, ecc(t) = 2 + max{h(si) | i ∈ [k]}, and
h(s) = 1 +max{h(si) | i ∈ [k]}.

Our search for the center node of an SLT-compressed tree is based on the following
lemma. For a context t(y) ∈ CΣ , where u is the Dewey address of the parameter y, and
a tree s ∈ TΣ we say that a node v ∈ D(t[s]) belongs to t if v ∈ D(t)\{u}. Otherwise,
we say that v belongs to s, which means that u is a prefix of v.

8



Lemma 7. Let t(y) ∈ CΣ be a context and s ∈ TΣ a tree such that �(t[s]) is even. Let
c = center(t[s]). Then c belongs to s if and only if ecc(t) ≤ h(s).

Lemma 8. For a given SLT grammar G such that valur,uo(G) has even diameter, one
can construct a G-compressed path for center(valur,uo(G)).

Proof. Let G = (N,Σ, S, P ). Our algorithm for finding the center node for val(G)
stores at each point of time a single tuple (tl, A, tr, p), where tl ∈ CΣ∪N and tr ∈
TΣ∪N ∪ {ε} are of polynomial size, A ∈ N , and p is a partial G-compressed path. It is
started with the tuple (y, S, ε, ε) The following invariants are preserved: If the current
tuple is (tl, A, tr, p) is, then:

– If A has rank 0 then tr = ε.
– val(G) = val(tl[A[tr]]) (here we set t[ε] = t).
– The tree tl[A[tr]] can be derived from the start variable S.
– p is the partial G-compressed path to the distinguished A in tl[A[tr]].
– center(valur,uo(G)) belongs to the subcontext val(A) in val(tl)[val(A)[val(tr)]].

For the tuple (tl, A, tr, p), the algorithm distinguishes on the right-hand side of A. If
this right-hand side has the form A(B) or A(B(y)), then, by comparing ecc(tl[B(y)])
and h(C[tr]) (we can compute these values in polynomial time, by constructing SLT
grammars for val(tl[B(y)]) and val(C[tr]) and using the recursions for ecc, rty and h),
we determine, whether the search for the center node has to continue in B or C, see
Lemma 7. In the first case we continue with the tuple (tl, B, C[tr], p · (A, ε)), and in
the second case we continue with (tl[B(y)], C, tr, p · (A, 1)).

Now assume that the right-hand side of A has the form σ(A1, . . . , Ak). Let ti =
tl[σ(A1, . . . , Ai−1, y, Ai+1, . . . , Ak)] for i ∈ [k]. Hence, val(G) = val(ti)[val(Ai)].
By comparing ecc(ti) and h(Ai) we want determine whether the center node belongs
to val(ti) or val(Ai), see Lemma 7. If the latter holds for some i ∈ [k], we can continue
the search in Ai, i.e., we continue with the tuple (ti, Ai, ε, p · (A, i)). On the other
hand, assume that for all i ∈ [k] the center point belongs to ti. In particular, it does
not belongs to any of the subtrees val(Ai). But by the last invariant, we known that
the center point belongs to the subcontext val(A) = σ(val(A1), . . . , val(Ak)). Hence,
the σ-labelled node must be the center point and we can return its G-compressed path
p · (A, ε). The case of a production A(y) → σ(A1, . . . As−1, y, As+1, . . . , Ak) can be
dealt with similarly. Note that |tl|+ |tr| stays bounded by the size of G. ut

4.2 Re-Rooting of SLT Grammars

Let G = (N,Σ, S, P ) be an SLT grammar (as usual, having the normal form from
Lemma 1) and p aG-compressed path. Let s(p) ∈ TΣ∪N be the tree defined inductively
as follows: Let (A → t) ∈ P and u ∈ D(t). Then s((A, u)) = t. If p = (A, t)p′ with
p′ non-empty, then either (i) u = ε and t = B(C) or (ii) u = i ∈ N and t[i] ∈ N (0).
In case (i) we set s(p) = s(p′)[C], in case (ii) we set s(p) = t′[s(p′)], where t′(y)
is obtained from t by replacing the i-th argument of the root by y. Note that s(p′) ∈
CΣ∪N ({y}) if p′ starts with a nonterminal of rank 1. Let s = s(p); its size is bounded
by the size of G. Note that s[u(p)] is a terminal symbol (recall that u(p) denotes the
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concatenation of the Dewey addresses in p). Assume that s[u(p)] = σ ∈ Σ. Let # be
a fresh symbol and let s′ be obtained from s by changing the label at u(p) from σ to
#. Let s′ ⇒∗G s′′ be the shortest derivation such that s′′[ε] = δ ∈ Σ (it consists of
at most |N | derivation steps). We denote the #-labeled node in s′′ by u. Finally, let t
be obtained from s′′ by changing the unique # into σ. We define the p-expansion of
G, denoted exG(p), as the tuple (t, u, σ, δ). Note that valG(p) is the unique #-labelled
node in valG(s

′′). The p-expansion can be computed in polynomial time from G and p.
The p-expansion (t, u, σ, δ) has all information needed to construct a grammar G′

representing the rooted version at p of val(G). If u = ε then also valG(p) = ε. Since G
is already rooted at ε nothing has to be done in this case and we returnG′ = G. If u 6= ε
then valG(p) 6= ε and hence t contains two terminal nodes which uniquely represent
the root node and the node valG(p) of the tree val(G).

Let s1 ∈ TΣ be a rooted ordered tree representing the unrooted unordered tree
s̃1 = ur(uo(s1)). Let u 6= ε be a node of s1. Let s1[ε] = δ ∈ Σ and s1[u] = σ ∈ Σ.
Since u 6= ε, we can write s1 = δ(ζ1, . . . , ζi−1, t

′[σ(ξ1, . . . , ξm)], ζi+1, . . . , ζk), where
t′ is a context, and u = iu′, where u′ is the Dewey address of the parameter y in t′.
A rooted ordered tree s2 that represents the rooted unordered tree s̃2 = root(s̃1, u)
can be defined as s2 = σ(ξ1, . . . , ξm, rooty(t′)[δ(ζ1, . . . , ζi−1, ζi+1, . . . , ζk)]), where
rooty is a function mapping contexts to contexts defined recursively as follows (f ∈ Σ,
t1, . . . , ti−1, ti+1, . . . , t` ∈ TΣ , and t(y), t′(y) ∈ CΣ):

rooty(y) = y (1)
rooty(f(t1, . . . , ti−1, y, ti+1, . . . , t`)) = f(t1, . . . , ti−1, y, ti+1, . . . , t`) (2)

rooty(t[t′(y)]) = rooty(t′)[rooty(t(y))] (3)

Intuitively, the mapping rooty unroots a context t(y) towards its y-node u, i.e., it re-
verses the path from the root to u. Thus, for instance, rooty(f(a, y, b)) = f(a, y, b) and
rooty(f(a, g(c, y, d), b)) = g(c, f(a, y, b), d).

Lemma 9. From a given SLT grammar G and a G-compressed path p one can con-
struct in polynomial time an SLT grammar G′ such that valuo(G

′) is isomorphic to
root(valur,uo(G), valG(p)).

Proof. LetG = (N,Σ, S, P ) and exG(p) = (t, u, σ, δ). If u = ε then defineG′ = G. If
u 6= ε then we can write t = δ(B1, . . . , Bi−1, t

′[σ(ξ1, . . . , ξm)], Bi+1, . . . , Bk), where
Bj ∈ N (0), ξj ∈ TN , t′ is a context composed of nonterminals A ∈ N (1) and contexts
f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (f ∈ Σ, ζj ∈ TN ), and u = iu′, where u′ is the Dewey
address of the parameter y in t′.

We define G′ = (N ] N ′, Σ, S, P ′) where N ′ = {A′ | A ∈ N (1)}. To define
the production set P ′, we extend the definition of rooty to contexts from CΣ∪N by (i)
allowing in the trees tj from Equation (2) also nonterminals, and (ii) defining for every
B ∈ N (1), rooty(B(y)) = B′(y). We now define the set of productions P ′ of P as
follows: We put all productions from P except for the start production (S → s) ∈ P
into P ′. For the start variable S we add to P ′ the production

S → σ(ξ1, . . . , ξm, rooty(t′)[δ(B1, . . . , Bi−1, Bi+1, . . . , Bk)]). (4)
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Moreover, let A ∈ N (1) and (A(y)→ ζ) ∈ P . If this is a type-(3) production, then we
add A′(y)→ ζ to P ′. If ζ = B(C(y)) then add A′(y)→ C ′(B′(y)) to P ′.

A simple induction shows that valG′(A′) = rooty(valG(A)) for every A ∈ N (1).
This implies that valG′(rooty(c(y))) = rooty(valG(c(y))) for every context c(y) that
is composed of contexts f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (ζj ∈ TN ) and nonterminals
A ∈ N (1). In particular, valG′(rooty(t′)) = rooty(valG(t

′(y))) for the context t′. This,
and the form of the start production of G′ (4) easily imply that valuo(G

′) is isomorphic
to root(valur,uo(G), valG(p)). ut

Corollary 10. The problem of deciding whether valur,uo(G1) and valur,uo(G2) are iso-
morphic for given SLT grammars G1 and G2 is PTIME-complete.

Proof. The upper bound follows from Lemma 8, Lemma 9, and Corollary 6. Hardness
for PTIME follows from the PTIME-hardness for dags [15] and the fact that isomorphism
of rooted unordered trees can be reduced to isomorphism of unrooted unordered trees
by labelling the roots with a fresh symbol. ut

5 Further Results

Bisimulation on SLT-compressed trees. Fix a setΣ of node labels. LetG = (V,E, λ)
be a directed node-labelled graph, i.e., E ⊆ V × V and λ : V → Σ. A binary relation
R ⊆ V × V is a bisimulation on G, if for all (u, v) ∈ R the following three conditions
hold: (i) λ(u) = λ(v), (ii) if (u, u′) ∈ E then there exists v′ ∈ V such that (v, v′) ∈ E
and (u′, v′) ∈ R, and (iii) if (v, v′) ∈ E then there exists u′ ∈ V such that (u, u′) ∈
E and (u′, v′) ∈ R. Let the relation ∼ be the union of all bisimulations on G. It is
the largest bisimulation and an equivalence relation. Two rooted unordered trees s, t
with node labels from Σ and roots rs, rt are bisimulation equivalent if rs ∼ rt holds
in the disjoint union of s and t. For instance, f(a, a, a) and f(a, a) are bisimulation
equivalent but f(g(a), g(b)) and f(g(a, b)) are not. For a rooted unordered tree t we
define the bisimulation canon bcanon(t) inductively: Let t = f(t1, . . . , tn) (n ≥ 0)
and let bi = bcanon(ti). Then bcanon(t) = f(s1, . . . , sm), where (i) for every i ∈
[m], si is isomorphic to one of the bj , and (ii) for every i ∈ [n] there is a unique
j ∈ [m] such that si and bj are isomorphic as rooted unordered trees. In other words:
Bottom-up, we eliminate repeated subtrees among the children of a node. For instance,
bcanon(f(a, a, a)) = f(a) = bcanon(f(a, a)). Induction on the height of trees shows:

Lemma 11. Let s and t be rooted unordered trees. Then s and t are bisimulation equiv-
alent if and only if bcanon(s) and bcanon(t) are isomorphic.

The proof of the following theorem is similar to those of Theorem 5.

Theorem 12. From a given SLT grammar G one can compute a new SLT grammar G′

such that valuo(G
′) is isomorphic to bcanon(valuo(G)).

From Corollary 6, Lemma 11, and Theorem 12 we get:

Corollary 13. For given SLT grammars G1 and G2 one can check in polynomial time,
whether valuo(G1) and valuo(G2) are bisimulation equivalent.
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Non-linear ST grammars. Recall from Section 2 that ST grammars are exponentially
more succinct than SLT grammars. So, the following should not be surprising:

Lemma 14. A given ST grammar can be transformed in exponential time into an equiv-
alent SLT grammar.

Using this lemma, the upper bounds in the following statement follow from Corollary 6,
10, and 13. For the lower bound, one can reduce from QBF using gadgets from [9].

Theorem 15. The following questions are PSPACE-hard and in EXPTIME for given ST
grammars G1 and G2:

– Are valuo(G1) and valuo(G2) isomorphic (resp., bisimulation equivalent)?
– Are valur,uo(G1) and valur,uo(G2) isomorphic?

The precise complexity of these questions remains open. Since an ST grammar can be
transformed into a hierarchical graph definition for a dag, we rediscover the following
result from [3]: Bisimulation equivalence for dags given by hierarchical graph defini-
tions is PSPACE-hard and in EXPTIME.
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