121 research outputs found

    Effect of ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu-Al-Ni shape memory alloys

    Get PDF
    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shapememory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film

    Electrospun Nano-fibers for biomedical and tissue engineering applications: A comprehensive review

    Get PDF
    Pharmaceutical nano-fibers have attracted widespread attention fromresearchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization of the attained nano-fibers is undertaken through manipulation of the variables of the process and formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well as the environmental parameters including temperature and humidity. The nano-fibers achieved by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate progression in applications of drug release modification and tissue engineering (TE). The present review aims to focus on electro-spinning, optimization parameters, pharmacological applications, biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current developments and upcoming investigation directions are outlined for the advancement of electro-spun nano-fibers for TE. Moreover, the possible applications, complications and future developments of these nano-fibers are summarized in detail. © 2020 by the authors

    Antioxidant, antimicrobial and antiviral properties of herbal materials

    Get PDF
    Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics’ lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world’s populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold

    Get PDF
    Mg-Ca-TiO2 (MCT) composite scaffolds loaded with different concentrations of doxycycline (DC) with a network of interconnected pores with good compressive strength (5 ± 0.1 MPa) were fabricated via space holder method for the first time. The results showed that MCT-DC scaffolds possess a porosity and pore size in the range of 65–67% and 600–800 μm respectively. The bioactivity results exhibited the apatite formation on the MCT-DC scaffold surface, indicating that DC did not obstruct the bioactivity of MCT. The MCT-DC scaffolds drug release profiles show the initial burst and sustained drug release (55–75%) and the release rate could be adjusted via altering the DC concentration. The MCT loaded with 1 and 5% DC did not indicate cytotoxic behavior against MG63 cells while further DC loading resulted in some toxicity. Antimicrobial properties of MCT-DC scaffolds against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria were examined and the results reveal oblivious inhibition zone around each MCT-DC scaffold whereas no obvious inhibition is observed around the MCT scaffold. Therefore, MCT-DC composite scaffolds with low concentration of DC could be alternative candidates for infection prevention and bone tissue engineering

    In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance

    Get PDF
    Wound dressings based on nanofiber polymer scaffolds with good antimicrobial performance and skin reconstruction ability are promising options to thwart wound infection and accelerate wound healing. This paper reports on the synthesis via electrospinning of chitosan-alginate (CS-Alg) nanofiber dressings with various amounts of gentamicin (Gn; 0–10 wt%) as a drug delivery system. Smooth and continuous nanofibers with no obvious beads were created, with increases in the amount of Gn resulting in reduced fiber diameter. Antimicrobial tests showed the Gn-loaded nanofibers had good antibacterial performance as indicated by the inhibition of bacterial growth. CS-Alg nanofibers loaded with higher Gn concentrations exhibited greater antibacterial performance than those with lower Gn concentrations. In vitro cell culture studies demonstrated that CS-Alg wound dressings with 1–3% Gn improved L929 cell attachment and proliferation more than wound dressings with higher Gn concentrations. In vivo experiments revealed that Cs-Alg nanofibers loaded with 3% Gn significantly enhanced skin regeneration in a Balb/C mice model by stimulating the formation of a thicker dermis, increasing collagen deposition, and increasing the formation of new blood vessels and hair follicles. Collectively, Gn-loaded CS-Alg wound dressings can be considered a good candidate for drug delivery systems and skin regeneration applications. © 2019 Elsevier Lt

    Impacto de la estabilidad en el rendimiento de los clubes de fútbol de la Copa del Golfo Pérsico

    Get PDF
    The objective of this study was to determine the impact of stability/instability on the performance of Persian Gulf Pro League football clubs. All the clubs that had participated in more than 3 seasons of the last 17 seasons (2001-2019) of the Persian Gulf Pro League were analyzed in this study (n=26). The performance of each team (improvement or worsening in ranking) and their stability were analyzed year after year in the period 2001-2019. The stability was divided in four components: CEO, head coach, players and club. The statistical analysis was performed with the software SPSS. Stability significantly (p<0.05) increased performance and instability significantly (p<0.05) decreased performance of the clubs in the four components studied: CEO, head coach, players and club. Therefore, it is expected that the results of this study encourage Iranian football clubs to increase their stability.El objetivo de este estudio fue determinar el impacto de la estabilidad/inestabilidad en el rendimiento de los clubes de fútbol de la Copa del Golfo Pérsico. Todos los clubes que habían participado en más de 3 temporadas de las últimas 17 temporadas (2001-2019) de la Copa del Golfo Pérsico fueron analizados en este estudio (n=26). El rendimiento de cada equipo (mejora o empeoramiento en el ranking) y su estabilidad se analizaron año tras año en el período 2001-2019. La estabilidad se dividió en cuatro componentes: director, entrenador, jugadores y club. El análisis estadístico se realizó con el software SPSS. La estabilidad aumentó significativamente (p<0.05) el rendimiento y la inestabilidad disminuyó significativamente (p<0.05) el rendimiento de los clubes en los cuatro componentes estudiados: director, entrenador, jugadores y club. Por lo tanto, se espera que los resultados de este estudio animen a los clubes de fútbol iraníes a aumentar su estabilidad

    Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties

    Get PDF
    The addition of nanoscale additions to magnesium (Mg) based alloys can boost mechanical characteristics without noticeably decreasing ductility. Since Mg is the lightest structural material, the Mg-based nanocomposites (NCs) with improved mechanical properties are appealing materials for lightweight structural applications. In contrast to conventional Mg-based composites, the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability. The present article reviews Mg-based metal matrix nanocomposites (MMNCs) with metallic and ceramic additions, fabricated via both solid-based (sintering and powder metallurgy) and liquid-based (disintegrated melt deposition) technologies. It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites. Further, synergistic strengthening mechanisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided. Furthermore, this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional (uniaxial) and depth-sensing indentation techniques. The potential applications of magnesium-based alloys and nanocomposites are also surveyed

    In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance

    Get PDF
    Wound dressings based on nanofiber polymer scaffolds with good antimicrobial performance and skin reconstruction ability are promising options to thwart wound infection and accelerate wound healing. This paper reports on the synthesis via electrospinning of chitosan-alginate (CS-Alg) nanofiber dressings with various amounts of gentamicin (Gn; 0–10 wt%) as a drug delivery system. Smooth and continuous nanofibers with no obvious beads were created, with increases in the amount of Gn resulting in reduced fiber diameter. Antimicrobial tests showed the Gn-loaded nanofibers had good antibacterial performance as indicated by the inhibition of bacterial growth. CS-Alg nanofibers loaded with higher Gn concentrations exhibited greater antibacterial performance than those with lower Gn concentrations. In vitro cell culture studies demonstrated that CS-Alg wound dressings with 1–3% Gn improved L929 cell attachment and proliferation more than wound dressings with higher Gn concentrations. In vivo experiments revealed that Cs-Alg nanofibers loaded with 3% Gn significantly enhanced skin regeneration in a Balb/C mice model by stimulating the formation of a thicker dermis, increasing collagen deposition, and increasing the formation of new blood vessels and hair follicles. Collectively, Gn-loaded CS-Alg wound dressings can be considered a good candidate for drug delivery systems and skin regeneration applications

    Surgical reconstruction of the left main coronary artery with patch-angioplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional coronary artery bypass grafting (CABG) has been established as the treatment of choice for left main coronary artery (LMCA) stenosis However, the conventional grafting provides a retrograde perfusion to extensive myocardial area and leads prospectively to competitive flow of the non-occluded coronaries thus consuming the grafts. Surgical reconstruction of the LMCA with patch-angioplasty is an alternative method that eliminates these drawbacks.</p> <p>Methods</p> <p>Between February 1997 and July 2007, 37 patients with isolated LMCA stenosis were referred for surgical ostial reconstruction. In 27 patients (73%) surgical angioplasties have been performed. All patients were followed up clinically and with transesophageal echocardiography (TEE) and coronary angiography when required.</p> <p>Results</p> <p>In 10 patients (27%) a LMCA stenosis could not be confirmed. There were no early mortality or perioperative myocardial infarctions. The postoperative course was uneventful in all patients. In 25 patients, TEE demonstrated a wide open main stem flow pattern one to six months after reconstruction of the left main coronary artery with one patch mild aneurysmal dilated.</p> <p>Conclusions</p> <p>The surgical reconstruction with patch-angioplasty is a safe and effective method for the treatment of proximal and middle LMCA stenosis. Almost one third of the study group had no really LMCA stenosis: antegrade flow pattern remained sustained and the arterial grafts have been spared. In the cases of unclear or suspected LMCA stenosis, cardio-CT can be performed to unmask catheter-induced coronary spasm as the underlying reason for isolated LMCA stenosis.</p

    Maximizing dose reductions with cardiac CT

    Get PDF
    Multidetector computed tomography has come a long way in a short time, quickly becoming a standard tool in the cardiac imaging armamentarium. The promise of plaque imaging, combined with both anatomical visualization and stenosis detection, has made this a preferred first line test of many cardiologists and radiologists. This test is well suited to rule out coronary artery disease (obstruction) and still diagnosing subclinical plaque, with may be a good target for anti-atherosclerotic therapies. There has been recent criticism against CT imaging, and cardiac CT specifically, due to the high radiation doses that being employed. New advances have allowed for dramatic dose reductions. These include more routinely performed methods such as dose modulation, and newer methods such as prospective gating or minimizing the field of view. This paper will review the different applications to reduce cardiac CT radiation doses to nominal levels, potentially expanding the applications of cardiac CT by removing one of the biggest barriers
    corecore