27 research outputs found
A review of 35 cases of asymmetric crying facies
A review of 35 cases of asymmetric crying facies: Congenital asymmetric crying facies (ACF) is caused by congenital hypoplasia or agenesis of the depressor anguli oris muscle (DAOM) on one side of the mouth. It is well known that this anomaly is frequently associated with cardiovascular, head and neck, musculoskeletal, respiratory. gastrointestinal, central nervous system, and genitourinary anomalies. In this article we report 35 ACF patients (28 children and 7 adults) and found additional abnormalities in 16 of them (i.e. 45%). The abnormalities were cerebral and cerebellar atrophy, mega-cisterna magna, mental motor retardation, convulsions, corpus callosum dysgenesis, cranial bone defect, dermoid cyst, spina bifida occulta, hypertelorism, micrognatia, retrognatia, hemangioma on the lower lip, short frenulum, cleft palate, low-set cars, preauricular tag, mild facial hypoplasia, sternal cleft, congenital heart defect, renal hypoplasia, vesicoureteral reflux, hypertrophic osteoarthropathy, congenital joint contractures, congenital hip dislocation, polydactyly, and umbilical and inguinal hernia. Besides these, one infant was born to a diabetic mother, and had atrial septal defect and the four other children had 4p deletion, Klinefelter syndrome, isolated CD4 deficiency and Treacher-Collins like facial appearance, respectively. Although many of these abnormalities were reported in association with ACF, cerebellar atrophy, sternal cleft, cranial bone defect, infant of diabetic mother, 4p deletion, Klinefelter syndrome, isolated CD4 deficiency and Treacher, Coll ins like facial appearance were not previously published
BILATERAL TESTICULAR GERM CELL TUMOURS IN TURKEY: LONG-TERM RESULTS AND RISK FACTORS IN 27 PATIENTS
Alkali Metal Ion Complexes with Pyrazinetetracarboxylate: Two- and Three-Dimensional Frameworks
Visual Evoked Potentials in Differential Diagnosis of Multiple Sclerosis and Neurobehcet's Disease
The Role of Hs-CRP, D-Dimer and Fibrinogen in Differentiating Etiological Subtypes of Ischemic Stroke
The aim of this study was to evaluate the diagnostic value of the serum biochemical markers high-sensitivity C-reactive protein (hs-CRP), D-dimer (DD) and fibrinogen (Fg) in differentiating etiological subtypes of ischemic stroke. This study was a retrospective case-only study, consecutively including patients with acute ischemic stroke. All patients were classified into subtypes using the TOAST classification system. A total of 317 patients were evaluated. Hs-CRP and DD levels were significantly different among the subtypes and were the highest in CE, followed by LAA and SAA; no significant difference between the subtypes was found for Fg. Hs-CRP > 6.96 mg/L was classified as the CE subtype, with a sensitivity of 41% and a specificity of 74%; DD > 791.30 ng/mL was classified as CE, with a sensitivity of 58% and a specificity of 78%. The combination of hs-CRP and DD classification as CE yielded a sensitivity of 65% and a specificity of 91%. DD > 791.30 ng/mL was considered an independent predictive factor of CE. Hs-CRP and DD could be useful for identifying the etiological subtypes of acute ischemic stroke, especially for predicting CE. The diagnostic value of DD was higher than that of hs-CRP
Synthesis, characterization and H2 adsorption performances of polymeric Co(II) and Ni(II) complexes of pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole
We studied the synthesis and characterization of polymeric coordination complexes of Co(II) and Ni(II) ions with pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole. The e lemental analysis, infrared spectroscopy, powder X-ray diffraction, magnetic susceptibility, thermal analysis and X-ray single crystal techniques were used in the characterization. The X-ray single crystal analysis suggests that the pyrazine-2,3-dicarboxylato ligand acts as a bridging ligand through the oxygen atoms of the carboxylate groups and the nitrogen atoms on the pyrazine ring. The 1-vinylimidazole ligand behaves as a monodentate ligand via the ring nitrogen atom. Further, the H-2 adsorption studies were carried out at 75 K for various increasing pressures and the highest H-2 adsorption performances for Co(II) and Ni(II) complexes were estimated as 2.66 and 2.99 wt% at 87 bar. The theoretical calculations using the crystal data were also performed to determine the voids in the structure of Co(II) complex
