1,029 research outputs found
Solar Magnetic Tracking. I. Software Comparison and Recommended Practices
Feature tracking and recognition are increasingly common tools for data
analysis, but are typically implemented on an ad-hoc basis by individual
research groups, limiting the usefulness of derived results when selection
effects and algorithmic differences are not controlled. Specific results that
are affected include the solar magnetic turnover time, the distributions of
sizes, strengths, and lifetimes of magnetic features, and the physics of both
small scale flux emergence and the small-scale dynamo. In this paper, we
present the results of a detailed comparison between four tracking codes
applied to a single set of data from SOHO/MDI, describe the interplay between
desired tracking behavior and parameterization of tracking algorithms, and make
recommendations for feature selection and tracking practice in future work.Comment: In press for Astrophys. J. 200
Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation
Within the framework of exact quantum electrodynamics in dispersing and
absorbing media, we have studied the quantum state of the radiation emitted
from an initially in the upper state prepared two-level atom in a high-
cavity, including the regime where the emitted photon belongs to a wave packet
that simultaneously covers the areas inside and outside the cavity. For both
continuing atom--field interaction and short-term atom--field interaction, we
have determined the spatio-temporal shape of the excited outgoing wave packet
and calculated the efficiency of the wave packet to carry a one-photon Fock
state. Furthermore, we have made contact with quantum noise theories where the
intracavity field and the field outside the cavity are regarded as
approximately representing independent degrees of freedom such that two
separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.
A plasma wakefield acceleration experiment using CLARA beam
We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL
test facility CLARA (Compact Linear Accelerator for Research and Applications)
at Daresbury Laboratory. The idea is to use the relativistic electron beam from
CLARA, to investigate some key issues in electron beam transport and in
electron beam driven plasma wakefield acceleration, e.g. high gradient plasma
wakefield excitation driven by a relativistic electron bunch, two bunch
experiment for CLARA beam energy doubling, high transformer ratio, long bunch
self-modulation and some other advanced beam dynamics issues. This paper
presents the feasibility studies of electron beam transport to meet the
requirements for beam driven wakefield acceleration and presents the plasma
wakefield simulation results based on CLARA beam parameters. Other possible
experiments which can be conducted at the PARS beam line are also discussed
Photon emission by an atom in a lossy cavity
The dynamics of an initially excited two-level atom in a lossy cavity is
studied by using the quantum trajectory method. Unwanted losses are included,
such as photon absorption and scattering by the cavity mirrors and spontaneous
emission of the atom. Based on the obtained analytical solutions, it is shown
that the shape of the extracted spatiotemporal radiation mode sensitively
depends on the atom-field interaction. In the case of a short-term atom-field
interaction we show how different pulse shapes for the field extracted from the
cavity can be controlled by the interaction time
Casimir force acting on magnetodielectric bodies embedded in media
Within the framework of macroscopic quantum electrodynamics, general
expressions for the Casimir force acting on linearly and causally responding
magnetodielectric bodies that can be embedded in another linear and causal
magnetodielectric medium are derived. Consistency with microscopic
harmonic-oscillator models of the matter is shown. The theory is applied to
planar structures and proper generalizations of Casimir's and Lifshitz-type
formulas are given.Comment: 15 pages, 2 figures; minor additions and corrections, to appear in
PR
Continuous-variable optical quantum state tomography
This review covers latest developments in continuous-variable quantum-state
tomography of optical fields and photons, placing a special accent on its
practical aspects and applications in quantum information technology. Optical
homodyne tomography is reviewed as a method of reconstructing the state of
light in a given optical mode. A range of relevant practical topics are
discussed, such as state-reconstruction algorithms (with emphasis on the
maximum-likelihood technique), the technology of time-domain homodyne
detection, mode matching issues, and engineering of complex quantum states of
light. The paper also surveys quantum-state tomography for the transverse
spatial state (spatial mode) of the field in the special case of fields
containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and
raymer(at)uoregon.edu are welcom
Schroedinger cat-like states by conditional measurements on a beam-splitter
A scheme for generating Schr\"{o}dinger cat-like states of a single-mode
optical field by means of conditional measurement is proposed. Feeding into a
beam splitter a squeezed vacuum and counting the photons in one of the output
channels, the conditional states in the other output channel exhibit a number
of properties that are very similar to those of superpositions of two coherent
states with opposite phases. We present analytical and numerical results for
the photon-number and quadrature-component distributions of the conditional
states and their Wigner and Husimi functions. Further, we discuss the effect of
realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st
Entanglement, local measurements, and symmetry
A definition of entanglement in terms of local measurements is discussed.
Viz, the maximum entanglement corresponds to the states that cause the highest
level of quantum fluctuations in all local measurements determined by the
dynamic symmetry group of the system. A number of examples illustrating this
definition is considered.Comment: 10 pages. to be published in Journal of Optics
Casimir Force on Real Materials - the Slab and Cavity Geometry
We analyse the potential of the geometry of a slab in a planar cavity for the
purpose of Casimir force experiments. The force and its dependence on
temperature, material properties and finite slab thickness are investigated
both analytically and numerically for slab and walls made of aluminium and
teflon FEP respectively. We conclude that such a setup is ideal for
measurements of the temperature dependence of the Casimir force. By numerical
calculation it is shown that temperature effects are dramatically larger for
dielectrics, suggesting that a dielectric such as teflon FEP whose properties
vary little within a moderate temperature range, should be considered for
experimental purposes. We finally discuss the subtle but fundamental matter of
the various Green's two-point function approaches present in the literature and
show how they are different formulations describing the same phenomenon.Comment: 24 pages, 11 figures; expanded discussion, one appendix added, 1 new
figure and 10 new references. To appear in J. Phys. A: Math. Theo
Mean transverse energy, surface chemical and physical characterization of CERN-made Cs-Te photocathodes
Cesium telluride photocathodes are known to offer high quantum efficiencies under UV illumination combined with good lifetimes compared to other semiconductor photocathodes, making them very popular electron sources for particle accelerator applications. The development of photocathode preparation, characterization, and related expertise at a single accelerator laboratory can be challenging, expensive, and time consuming. Recognizing this, we explored the use of a custom-designed ultrahigh vacuum suitcase for transportation of CERN-made (Switzerland) cesium telluride photocathodes to Daresbury Laboratory (UK) for characterization. We report the synthesis and characterization of a batch of four cesium telluride photocathodes corresponding to our second attempt of transport, following design and process improvements through lessons learned from our first attempt. The photocathode characterization involved, where possible, measurements of the surface elemental composition using x-ray photoelectron spectroscopy (XPS), surface roughness with an in-vacuum scanning tunneling microscope (STM), and quantum efficiency (QE) measurements. Transverse energy distribution curves were obtained over a wide range of illumination wavelengths using the transverse energy spread spectrometer (TESS) at room- and cryogenic temperatures, and the values for mean transverse energy (MTE) were extracted. The photocathodes exhibited distinct thicknesses ranging from ∼50 to∼120 nm and significant MTE beyond the
photoemission threshold which is attributed to the presence of CsxO and Cs phases, as confirmed by XPS analysis. The photocathode that exhibited no carbon or oxygen contamination was measured to have the highest QE of 2.9% at a wavelength of 265 nm at the end of the performance characterization process. The results presented herein offer an insight into the achievements possible through international collaborations by successfully utilizing long-distance transportation of photocathodes by land under ultrahigh vacuum conditions
- …