184 research outputs found

    Pd/Cr Gates for a MIS Type Hydrogen Sensor

    Get PDF
    Instead of the pure Pd gates in MIS type hydrogen sensor, Pd-Cr alloy gates with different composition and structure were used to improve the sensors performance. The use of Pd-Cr alloy not only extended the dynamic range from 100 ppm to 50,000 ppm of hydrogen, but also showed quick response. The dynamic range and sensitivity were related to the nature of metal outer surface and the metal/insulator interface respectively

    Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro

    Get PDF
    Osteoclast (OC) development in response to nuclear factor kappa-Î’ ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation

    Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters

    Full text link
    We present metallicity estimates for seven open clusters based on spectrophotometric indices from moderate-resolution spectroscopy. Observations of field giants of known metallicity provide a correlation between the spectroscopic indices and the metallicity of open cluster giants. We use \chi^2 analysis to fit the relation of spectrophotometric indices to metallicity in field giants. The resulting function allows an estimate of the target-cluster giants' metallicities with an error in the method of \pm0.08 dex. We derive the following metallicities for the seven open clusters: NGC 1245, [m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04; NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705, [m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates will be useful in planning future extra-solar planet transit searches since planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A

    Performance of a MIS Type Pd-Cr/AlN/Si Hydrogen Sensor

    Get PDF
    An MIS Hydrogen sensor with a Pd0.96Cr0.04/AlN/Si structure was fabricated, exhibiting the dynamic range considerably wider than that of analogous devices with pure Pd gates. A useful response could be obtained for Hydrogen concentrations as large as 50,000 ppm. Although the response amplitude was much reduced at the lower concentrations, satisfactory signal to noise down to 50 ppm could be obtained. The saturating magnitude of the electrical response is in the range of 0.1 to 0.5 V, which is the same as that for the pure Pd gated devices, inspite of the 3 orders of magnitude difference in the saturation hydrogen concentration. This result will be discussed in terms of the response mechanism of these devices

    Cardiovascular adverse events in modern myeloma therapy - incidence and risks. A review from European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA)

    Get PDF
    Cardiovascular disease in myeloma patients may derive from factors unrelated to the disease (age, diabetes, dyslipidemia, obesity, prior cardiovascular diseases), related to the disease (cardiac AL-amyloidosis, hyperviscosity, high-output failure, arteriovenous shunting, anemia, renal dysfunction) and linked to antimyeloma treatment (anthracyclines, corticosteroids, alkylating agents, immunomodulatory drugs, proteasome inhibitors). An accurate knowledge of cardiovascular events, effective dose reductions, prevention and management of early and late cardiovascular side effects of chemotherapeutic agents are essential in current clinical practice. Myeloma experts are obliged to carefully balance drugs' efficacy and toxicity for each individual patient. This review summarizes current data and novel insights on cardiovascular adverse events of today's antimyeloma treatment, focusing on carfilzomib, which is the starting point to develop consensus recommendations on preventing and managing cardiovascular side effects in myeloma patients

    Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells.

    Get PDF
    Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma

    The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

    Get PDF
    Multiple myeloma is a malignancy of plasma cells (PC) initiated and driven by primary and secondary genetic events. Nevertheless, myeloma PC survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B cell development in both human and mouse cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma PC, interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the PC lineage-defining transcription factor IRF4, and thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a non-canonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology

    Patient-centered practice in elderly myeloma patients: an overview and consensus from the European Myeloma Network (EMN)

    Get PDF
    Multiple myeloma is a disease typical of the elderly, and, because of the increase in life expectancy of the general population, its incidence is expected to grow in the future. Elderly patients represent a particular challenge due to their marked hete rogeneity. Many new and highly effective drugs have been introduced in the last few years, and resu lts from clinical trials are promising. Besides the availability of novel agents, a careful evaluation of elderly patients showed to be a key factor for the success of therapy. A geriatric assessment is a valid strategy to better stratify patients. In particular, different scores are available today to appropriately assess elderly patients and define their fitness/frailty status. The choice of treatm ent – transplantation, triplets, doublets, or reduced- dose therapies including novel agents – should depend on the patient’s fitness status (fit, intermediate-fit or frail). Second-generation no vel agents have also been evaluated as salvage therapy in the elderly, and these new agents certai nly represent a further step forward in the treatment armamentarium for elderly patients with multiple myeloma

    Systems medicine dissection of chr1q-amp reveals a novel PBX1-FOXM1 axis for targeted therapy in multiple myeloma

    Get PDF
    Understanding the biological and clinical impact ofcopy number aberrations (CNA)for the development of precision therapies in cancer remains anunmet challenge. Genetic amplification of chromosome 1q (chr1q-amp) is a major CNAconferring adverse prognosis in several types of cancer, including in the blood cancer multiple myeloma (MM). Although severalgenes across chr1q portend high-risk MM disease, the underpinning molecular aetiology remains elusive. Here, with reference to the 3D chromatin structure, we integrate MMpatient multi-omics datasets with genetic variables to obtain an associated clinical risk map across chr1q and to identify 103 adverse prognosis genes in chr1q-amp MM. Prominent amongst these genes, the transcription factor PBX1 is ectopically expressed by genetic amplification and epigenetic activation of its own preserved 3D regulatory domain. By binding to reprogrammed super-enhancers, PBX1 directly regulates critical oncogenic pathways and a FOXM1-dependent transcriptional programme. Together, PBX1 and FOXM1 activate a proliferative gene signature which predicts adverse prognosis across multiple types of cancer. Notably, pharmacological disruption of the PBX1-FOXM1 axis with existing agents (thiostrepton) and a novel PBX1 small-molecule inhibitor (T417) is selectively toxic against chr1q-amplified myeloma and solid tumour cells. Overall, our systems medicine approach successfully identifies CNA-driven oncogenic circuitries, links them to clinical phenotypes and proposes novel CNA-targeted therapystrategies in multiple myeloma and other types of cancer
    • …
    corecore