104 research outputs found

    Ernst Jünger and the problem of Nihilism in the age of total war

    Get PDF
    As a singular witness and actor of the tumultuous twentieth century, Ernst Jünger remains a controversial and enigmatic figure known above all for his vivid autobiographical accounts of experience in the trenches of the First World War. This article will argue that throughout his entire oeuvre, from personal diaries to novels and essays, he never ceased to grapple with what he viewed as the central question of the age, namely that of the problem of nihilism and the means to overcome it. Inherited from Nietzsche’s diagnosis of Western civilization in the late nineteenth century to which he added an acute observation of the particular role of technology within it, Jünger would employ this lens to make sense of the seemingly absurd industrial slaughter of modern war and herald the advent of a new voluntarist and bellicist order that was to imminently sweep away timorous and decadent bourgeois societies obsessed with security and self-preservation. Jünger would ultimately see his expectations dashed, including by the forms of rule that National Socialism would take, and eventually retreated into a reclusive quietism. Yet he never abandoned his central problematique of nihilism, developing it further in exchanges with Martin Heidegger after the Second World War. And for all the ways in which he may have erred, his life-long struggle with meaning in the age of technique and its implications for war and security continue to make Jünger a valuable interlocutor of the present

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    Über Stoffwechselwirkungen von Sexualhormonen auf ihr Erfolgsorgan

    No full text
    corecore