2,028 research outputs found

    Production of Beryllium and Boron by Spallation in Supernova Ejecta

    Get PDF
    The abundances of beryllium and boron have been measured in halo stars of metallicities as low as [Fe/H] =-3. The observations show that the ratios Be/Fe and B/Fe are independent of metallicity and approximately equal to their solar values over the entire range of observed metallicity. These observations are in contradiction with the predictions of simple models of beryllium and boron production by spallation in the interstellar medium of a well mixed galaxy. We propose that beryllium and boron are produced by spallation in the ejecta of type II supernovae. In our picture, protons and alpha particles are accelerated early in the supernova event and irradiate the heavy elements in the ejecta long before the ejecta mixes with the interstellar medium. We follow the propagation of the accelerated particles with a Monte-Carlo code and find that the energy per spallation reaction is about 5 GeV for a variety of initial particle spectra and ejecta compositions. Reproducing the observed Be/Fe and B/Fe ratios requires roughly 3 times 10^{47} ergs of accelerated protons and alphas. This is much less than the 10^{51} ergs available in a supernova explosion.Comment: 5 pages, Latex, to be published in the 4th Compton Symposium Conference Proceedin

    A Theoretical Analysis of Thermal Radiation from Neutron Stars

    Get PDF
    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process

    Mechanical Translation

    Get PDF
    Contains reports on two research projects.National Science Foundatio

    Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research.

    Get PDF
    Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments

    Mechanical Translation

    Get PDF
    Contains research objectives and reports one two research projects.National Science Foundatio

    Investigations of an urban area and its locale using ERTS-1 data supported by U-photography

    Get PDF
    An urban area in central Pennsylvania and the surrounding locality were investigated separately at first by photointerpretation of ERTS-1 imagery and by computer processing of MSS tapes. Next the photointerpretation and processing were coordinated. The results of the cooperative effort of photointerpreters and computer processing analysts were much improved over independent efforts. It was found that single frames of U-2 photography could be projected onto printer output maps with little recognizable distortion in areas 10 to 25 cm square. In this way targets could be identified for use as training areas for computer processed signature identification. In addition, at any stage of category mapping, the level of success in correct classification could be assessed by this method. The results of the classification of the study area are discussed

    Diffusive behavior of a greedy traveling salesman

    Full text link
    Using Monte Carlo simulations we examine the diffusive properties of the greedy algorithm in the d-dimensional traveling salesman problem. Our results show that for d=3 and 4 the average squared distance from the origin is proportional to the number of steps t. In the d=2 case such a scaling is modified with some logarithmic corrections, which might suggest that d=2 is the critical dimension of the problem. The distribution of lengths also shows marked differences between d=2 and d>2 versions. A simple strategy adopted by the salesman might resemble strategies chosen by some foraging and hunting animals, for which anomalous diffusive behavior has recently been reported and interpreted in terms of Levy flights. Our results suggest that broad and Levy-like distributions in such systems might appear due to dimension-dependent properties of a search space.Comment: accepted in Phys. Rev.

    The role of Volatile Anesthetics in Cardioprotection: a systematic review.

    Get PDF
    This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary artery disease who are undergoing surgery

    Thermal origin of neutron star magnetic fields

    Get PDF
    It is proposed that magnetic field arises naturally in neutron stars as a consequence of thermal effects occurring in their outer crusts. The heat flux through the crust, which is carried mainly by degenerate electrons, can give rise to a possible thermoelectric instability in the solid crust which causes horizontal magnetic field components to grow exponentially with time. However, in order for the thermally driven growth to exceed ohmic decay, either the electron collision time must exceed existing estimates by a factor ∼ 3 or the surface layers comprise helium. A second instability is possible if the liquid phase that lies above the solid crust also contains a horizontal magnetic field. The heat flux will drive circulation which should amplify the field strength provided that there is a seed field in excess of ∼ 10^8 G. If either of these two instabilities develops the field will quickly grow to a strength of ∼ 10^(12) G, where the instabilities become non-linear. Further growth will saturate when either the magnetic stress exceeds the lattice yield stress or the temperature perturbations become non-linear, both of which occur at a subsurface field strength of ∼ 10^(14) G; the corresponding surface field strength is ∼ 10^(12) G. Further evolution of the magnetic field should lead to long-range order and yield neutron star magnetic dipole moments ∼ 10^(30) G cm^3, comparable with those observed. Newly-formed neutron stars should be able to develop their dipole moments in a hundred thousand years and maintain them for as long as heat flows through the crust. Thereafter, the dipole moment should decay in several million years, as observed in the case of most radio pulsars. Neutron stars that are formed spinning rapidly, like that in the Crab Nebula, should be able to grow magnetic fields far more rapidly since their rotational energy can also be tapped to drive thermoelectric currents. The interiors of neutron stars in binary systems may be heated by the energy released by accreting matter. The resulting heat flux may cause the production of magnetic fields in these objects. Binary pulsars, with their unusually low and persistent fields, have probably passed through this phase
    corecore