10,705 research outputs found

    Entropy production in a photovoltaic cell

    Full text link
    We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.Comment: 7 pages, 2 figure

    Exact correspondence between Renyi entropy flows and physical flows

    Full text link
    We present a universal relation between the flow of a Renyi entropy and the full counting statistics of energy transfers. We prove the exact relation for a flow to a system in thermal equilibrium that is weakly coupled to an arbitrary time-dependent and non-equilibrium system. The exact correspondence, given by this relation, provides a simple protocol to quantify the flows of Shannon and Renyi entropies from the measurements of energy transfer statistics.Comment: 9 pages, 5 figure

    Stimulated quantum phase slips from weak electromagnetic radiations in superconducting nanowires

    Full text link
    We study the rate of quantum phase slips in an ultranarrow superconducting nanowire exposed to weak electromagnetic radiations. The superconductor is in the dirty limit close to the superconducting-insulating transition, where fluxoids move in strong dissipation. We use a semiclassical approach and show that external radiation stimulates a significant enhancement in the probability of quantum phase slips. This can help to outline a new type of detector for microwave to submillimetre radiations based on stimulated quantum phase slip phenomenon.Comment: 10 pages, 9 figure

    Improved Detection Rates for Close Binaries Via Astrometric Observations of Gravitational Microlensing Events

    Get PDF
    In addition to constructing a Galactic matter mass function free from the bias induced by the hydrogen-burning limit, gravitational microlensing allows one to construct a mass function which is less affected by the problem of unresolved binaries (Gaudi & Gould). However, even with the method of microlensing, the photometric detection of binaries is limited to binary systems with relatively large separations of b0.4b\gtrsim 0.4 of their combined Einstein ring radius, and thus the mass function is still not totally free from the problem of unresolved binaries. In this paper, we show that by detecting distortions of the astrometric ellipse of a microlensing event with high precision instruments such as the {\it Space Interferometry Mission}, one can detect close binaries at a much higher rate than by the photometric method. We find that by astrometrically observing microlensing events, 50\sim 50% of binaries with separations of 0.1rE0.1r_{\rm E} can be detected with the detection threshold of 3%. The proposed astrometric method is especially efficient at detecting very close binaries. With a detection threshold of 3% and a rate of 10%, one can astrometrically detect binaries with separations down to 0.01rE\sim 0.01r_{\rm E}.Comment: total 14 pages, including 5 Figures and no Table (For figure 1, please send a request mail to [email protected]), accepted to ApJ (Vol 525, 000), updated versio

    Phase-coexisting patterns, horizontal segregation and controlled convection in vertically vibrated binary granular mixtures

    Get PDF
    We report new patterns, consisting of coexistence of sub-harmonic/harmonic and asynchronous states [for example, a granular gas co-existing with (i) bouncing bed, (ii) undulatory subharmonic waves and (iii) Leidenfrost-like state], in experiments on vertically vibrated binary granular mixtures in a Heleshaw-type cell. Most experiments have been carried out with equimolar binary mixtures of glass and steel balls of same diameter by varying the total layer-height (FF) for a range of shaking acceleration (Γ\Gamma). All patterns as well as the related phase-diagram in the (Γ,F\Gamma, F)-plane have been reproduced via molecular dynamics simulations of the same system. The segregation of heavier and lighter particles along the horizontal direction is shown to be the progenitor of such phase-coexisting patterns as confirmed in both experiment and simulation. At strong shaking we uncover a {\it partial} convection state in which a pair of convection rolls is found to coexist with a Leidenfrost-like state. The crucial role of the relative number density of two species on controlling the buoyancy-driven granular convection is demonstrated. A possible model for spontaneous horizontal segregation is suggested based on anisotropic diffusion
    corecore