24,551 research outputs found

    Rabi Oscillations in Systems with Small Anharmonicity

    Get PDF
    When a two-level quantum system is irradiated with a microwave signal, in resonance with the energy difference between the levels, it starts Rabi oscillation between those states. If there are other states close, in energy, to the first two, the Rabi signal will also induce transition to those. Here, we study the probability of transition to the third state, in a three-level system, while a Rabi oscillation between the first two states is performed. We investigate the effect of pulse shaping on the probability and suggest methods for optimizing pulse shapes to reduce transition probability.Comment: 7 pages, 7 figure

    Generalized London free energy for high-TcT_c vortex lattices

    Full text link
    We generalize the London free energy to include four-fold anisotropies which could arise from d-wave pairing or other sources in a tetragonal material. We use this simple model to study vortex lattice structure and discuss neutron scattering, STM, Bitter decoration and μ\muSR experiments.Comment: REVTeX, 4 pages, 2 .ps figures included, submitted to PR

    Macroscopic Resonant Tunneling in the Presence of Low Frequency Noise

    Full text link
    We develop a theory of macroscopic resonant tunneling of flux in a double-well potential in the presence of realistic flux noise with significant low-frequency component. The rate of incoherent flux tunneling between the wells exhibits resonant peaks, the shape and position of which reflect qualitative features of the noise, and can thus serve as a diagnostic tool for studying the low-frequency flux noise in SQUID qubits. We show, in particular, that the noise-induced renormalization of the first resonant peak provides direct information on the temperature of the noise source and the strength of its quantum component.Comment: 4 pages, 1 figur

    Local Radon Descriptors for Image Search

    Full text link
    Radon transform and its inverse operation are important techniques in medical imaging tasks. Recently, there has been renewed interest in Radon transform for applications such as content-based medical image retrieval. However, all studies so far have used Radon transform as a global or quasi-global image descriptor by extracting projections of the whole image or large sub-images. This paper attempts to show that the dense sampling to generate the histogram of local Radon projections has a much higher discrimination capability than the global one. In this paper, we introduce Local Radon Descriptor (LRD) and apply it to the IRMA dataset, which contains 14,410 x-ray images as well as to the INRIA Holidays dataset with 1,990 images. Our results show significant improvement in retrieval performance by using LRD versus its global version. We also demonstrate that LRD can deliver results comparable to well-established descriptors like LBP and HOG.Comment: To appear in proceedings of the 7th International Conference on Image Processing Theory, Tools and Applications (IPTA 2017), Nov 28-Dec 1, Montreal, Canad

    Non-Markovian incoherent quantum dynamics of a two-state system

    Full text link
    We present a detailed study of the non-Markovian two-state system dynamics for the regime of incoherent quantum tunneling. Using perturbation theory in the system tunneling amplitude Δ\Delta, and in the limit of strong system-bath coupling, we determine the short time evolution of the reduced density matrix and thereby find a general equation of motion for the non-Markovian evolution at longer times. We relate the nonlocality in time due to the non-Markovian effects with the environment characteristic response time. In addition, we study the incoherent evolution of a system with a double-well potential, where each well consists several quantized energy levels. We determine the crossover temperature to a regime where many energy levels in the wells participate in the tunneling process, and observe that the required temperature can be much smaller than the one associated with the system plasma frequency. We also discuss experimental implications of our theoretical analysis.Comment: 10 pages, published versio

    Mesoscopic multiterminal Josephson structures: I. Effects of nonlocal weak coupling

    Full text link
    We investigate nonlocal coherent transport in ballistic four-terminal Josephson structures (where bulk superconductors (terminals) are connected through a clean normal layer, e.g., a two-dimensional electron gas). Coherent anisotropic superposition of macroscopic wave functions of the superconductors in the normal region produces phase slip lines (2D analogs to phase slip centres) and time-reversal symmetry breaking 2D vortex states in it, as well as such effects as phase dragging and magnetic flux transfer. The tunneling density of local Andreev states in the normal layer was shown to contain peaks at the positions controlled by the phase differences between the terminals. We have obtained general dependence of these effects on the controlling supercurrent/phase differences between the terminals of the ballistic mesoscopic four-terminal SQUID.Comment: 18 pages, 11 figure
    corecore