62 research outputs found

    Lateral Ordering of InAs Quantum Dots on Cross-hatch Patterned GaInP

    Get PDF
    We report the use of partially relaxed tensile as well as compressively strained GaInP layers for lateral ordering of InAs quantum dots with the aid of misfit dislocation networks. The strained layers and the InAs QDs were characterized by means of atomic force microscopy, scanning electron microscopy, and X-ray reciprocal space mapping. The QD-ordering properties of compressive GaInP are found to be very similar with respect to the use of compressive GaInAs, while a significantly stronger ordering of QDs was observed on tensile GaInP. Furthermore, we observed a change of the major type of dislocation in GaInP layers as the growth temperature was modified

    Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector

    Full text link
    We present the results of the charge ratio (RR) and polarization (P0μP^{\mu}_{0}) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R=1.32±0.02R=1.32 \pm 0.02 (stat.+syst.)(\mathrm{stat.}{+}\mathrm{syst.}) at EμcosθZenith=0.70.2+0.3E_{\mu}\cos \theta_{\mathrm{Zenith}}=0.7^{+0.3}_{-0.2} TeV\mathrm{TeV}, where EμE_{\mu} is the muon energy and θZenith\theta_{\mathrm{Zenith}} is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the πK\pi K model of 1.9σ1.9\sigma. We also measured the muon polarization at the production location to be P0μ=0.52±0.02P^{\mu}_{0}=0.52 \pm 0.02 (stat.+syst.)(\mathrm{stat.}{+}\mathrm{syst.}) at the muon momentum of 0.90.1+0.60.9^{+0.6}_{-0.1} TeV/c\mathrm{TeV}/c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5σ1.5\sigma. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV/c1~\mathrm{TeV}/c. These measurement results are useful to improve the atmospheric neutrino simulations.Comment: 29 pages, 45 figure

    Performance of SK-Gd's Upgraded Real-time Supernova Monitoring System

    Full text link
    Among multi-messenger observations of the next galactic core-collapse supernova, Super-Kamiokande (SK) plays a critical role in detecting the emitted supernova neutrinos, determining the direction to the supernova (SN), and notifying the astronomical community of these observations in advance of the optical signal. On 2022, SK has increased the gadolinium dissolved in its water target (SK-Gd) and has achieved a Gd concentration of 0.033%, resulting in enhanced neutron detection capability, which in turn enables more accurate determination of the supernova direction. Accordingly, SK-Gd's real-time supernova monitoring system (Abe te al. 2016b) has been upgraded. SK_SN Notice, a warning system that works together with this monitoring system, was released on December 13, 2021, and is available through GCN Notices (Barthelmy et al. 2000). When the monitoring system detects an SN-like burst of events, SK_SN Notice will automatically distribute an alarm with the reconstructed direction to the supernova candidate within a few minutes. In this paper, we present a systematic study of SK-Gd's response to a simulated galactic SN. Assuming a supernova situated at 10 kpc, neutrino fluxes from six supernova models are used to characterize SK-Gd's pointing accuracy using the same tools as the online monitoring system. The pointing accuracy is found to vary from 3-7^\circ depending on the models. However, if the supernova is closer than 10 kpc, SK_SN Notice can issue an alarm with three-degree accuracy, which will benefit follow-up observations by optical telescopes with large fields of view.Comment: 38 pages, 29 figures, 6 table

    Search for Periodic Time Variations of the Solar 8^8B Neutrino Flux Between 1996 and 2018 in Super-Kamiokande

    Full text link
    We report a search for time variations of the solar 8^8B neutrino flux using 5,804 live days of Super-Kamiokande data collected between May 31, 1996, and May 30, 2018. Super-Kamiokande measured the precise time of each solar neutrino interaction over 22 calendar years to search for solar neutrino flux modulations with unprecedented precision. Periodic modulations are searched for in a data set comprised of five-day interval solar neutrino flux measurements with a maximum likelihood method. We also applied the Lomb-Scargle method to this data set to compare it with previous reports. The only significant modulation found is due to the elliptic orbit of the Earth around the Sun. The observed modulation is consistent with astronomical data: we measured an eccentricity of (1.53±\pm0.35)\,\%, and a perihelion shift is (-1.5±\pm13.5)\,days.Comment: 8 pages, 5 figures, 2 tables, and data file: "sksolartimevariation5804d.txt

    Solar neutrino measurements using the full data period of Super-Kamiokande-IV

    Full text link
    An analysis of solar neutrino data from the fourth phase of Super-Kamiokande~(SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the data set of SK-IV corresponds to 29702970~days and the total live time for all four phases is 58055805~days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering the data acquisition threshold in May 2015, further reduction of the spallation background using neutron clustering events, precise energy reconstruction considering the time variation of the PMT gain. The observed number of solar neutrino events in 3.493.49--19.4919.49 MeV electron kinetic energy region during SK-IV is 65,443388+390(stat.)±925(syst.)65,443^{+390}_{-388}\,(\mathrm{stat.})\pm 925\,(\mathrm{syst.}) events. Corresponding 8B\mathrm{^{8}B} solar neutrino flux is (2.314±0.014(stat.)±0.040(syst.))×106 cm2s1(2.314 \pm 0.014\, \rm{(stat.)} \pm 0.040 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}, assuming a pure electron-neutrino flavor component without neutrino oscillations. The flux combined with all SK phases up to SK-IV is (2.336±0.011(stat.)±0.043(syst.))×106 cm2s1(2.336 \pm 0.011\, \rm{(stat.)} \pm 0.043 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}. Based on the neutrino oscillation analysis from all solar experiments, including the SK 58055805~days data set, the best-fit neutrino oscillation parameters are sin2θ12,solar=0.306±0.013\rm{sin^{2} \theta_{12,\,solar}} = 0.306 \pm 0.013 and Δm21,solar2=(6.100.81+0.95)×105 eV2\Delta m^{2}_{21,\,\mathrm{solar}} = (6.10^{+ 0.95}_{-0.81}) \times 10^{-5}~\rm{eV}^{2}, with a deviation of about 1.5σ\sigma from the Δm212\Delta m^{2}_{21} parameter obtained by KamLAND. The best-fit neutrino oscillation parameters obtained from all solar experiments and KamLAND are sin2θ12,global=0.307±0.012\sin^{2} \theta_{12,\,\mathrm{global}} = 0.307 \pm 0.012 and Δm21,global2=(7.500.18+0.19)×105 eV2\Delta m^{2}_{21,\,\mathrm{global}} = (7.50^{+ 0.19}_{-0.18}) \times 10^{-5}~\rm{eV}^{2}.Comment: 47 pages, 61 figure

    Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I–V

    Get PDF
    We present a measurement of neutrino oscillation parameters with the Super-Kamiokande detector using atmospheric neutrinos from the complete pure-water SK I–V (April 1996–July 2020) dataset, including events from an expanded fiducial volume. The dataset corresponds to 6511.3 live days and an exposure of 484.2 kiloton-years. Measurements of the neutrino oscillation parameters Δm322, sin2θ23, sin2θ13, δCP, and the preference for the neutrino mass ordering are presented with atmospheric neutrino data alone, and with constraints on sin2θ13 from reactor neutrino experiments. Our analysis including constraints on sin2θ13 favors the normal mass ordering at the 92.3% level

    Combined pre-supernova alert system with KamLAND and Super-Kamiokande

    Get PDF
    Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15 M⊙ star within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance

    Performance of SK-Gd’s upgraded real-time supernova monitoring system

    Get PDF
    Among multimessenger observations of the next Galactic core-collapse supernova, Super-Kamiokande (SK) plays a critical role in detecting the emitted supernova neutrinos, determining the direction to the supernova (SN), and notifying the astronomical community of these observations in advance of the optical signal. In 2022, SK has increased the gadolinium dissolved in its water target (SK-Gd) and has achieved a Gd concentration of 0.033%, resulting in enhanced neutron detection capability, which in turn enables more accurate determination of the supernova direction. Accordingly, SK-Gd's real-time supernova monitoring system has been upgraded. SK_SN Notice, a warning system that works together with this monitoring system, was released on 2021 December 13, and is available through GCN Notices. When the monitoring system detects an SN-like burst of events, SK_SN Notice will automatically distribute an alarm with the reconstructed direction to the supernova candidate within a few minutes. In this paper, we present a systematic study of SK-Gd's response to a simulated Galactic SN. Assuming a supernova situated at 10 kpc, neutrino fluxes from six supernova models are used to characterize SK-Gd's pointing accuracy using the same tools as the online monitoring system. The pointing accuracy is found to vary from 3° to 7° depending on the models. However, if the supernova is closer than 10 kpc, SK_SN Notice can issue an alarm with three-degree accuracy, which will benefit follow-up observations by optical telescopes with large fields of view

    Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector

    Get PDF
    We present the results of the charge ratio (R) and polarization (Pμ0) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R=1.32±0.02 (stat.+syst.) at EμcosθZenith=0.7+0.3−0.2 TeV, where Eμ is the muon energy and θZenith is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the πK model of 1.9σ. We also measured the muon polarization at the production location to be Pμ0=0.52±0.02 (stat.+syst.) at the muon momentum of 0.9+0.6−0.1 TeV/c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5σ. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV/c. These measurement results are useful to improve the atmospheric neutrino simulations
    corecore