18 research outputs found

    A Review Article: Free Radical and Replacement Synthetic Antioxidant by Natural Antioxidant

    Get PDF
    Free radical may be responsible of several pathophysiology disease for threatening human life, and they are produced from endogenous and exogenous sources. Using the balanced amount  of nutritious diet lead to a good health, may be neutralizing or scavenging  free radicals by antioxidants compounds. daily diet have large number of vitamin A, E and C, carotenoids, polyphenols, etc. as natural antioxidants, the main bases of them are fruits, cereals, vegetables, and beverages. Enzymatic and non-enzymatic antioxidant substances are two different kinds that lessen the reactions of free radicals. In order to protect itself from reactive oxygen species, the human body uses an enzyme antioxidant. The two kinds of non-enzymatic antioxidants are natural antioxidants and synthetic antioxidants. The aim of this review is to knowledge a reasons which causes the free radical and balance them by natural antioxidant constituents, and replacement synthetic antioxidant by natural antioxidant, due to daily diet have large amounts from natural antioxidants, and natural antioxidants more effective than synthetic antioxidants, in additional they occurrence in nature and more inexpensive

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

    No full text
    Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human-derived microbiotas in mice, factors affecting this process and resulting impact on metabolic health. We thus transplanted faecal microbiotas from humans (16 obese and 16 controls) separately into 64 germ-free Swiss Webster mice caged in pairs within four isolators, with two isolators assigned to each phenotype, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread of microbes contributes to the development of metabolic traits. This is of major importance for design of animal studies, and indicates that environmental transfer of microbes between individuals may affect host metabolic traits
    corecore