32 research outputs found

    CAMELS-Chem: augmenting CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) with atmospheric and stream water chemistry data

    Get PDF
    Large sample datasets are transforming the catchment sciences, but there are few off-the-shelf stream water chemistry datasets with complementary atmospheric deposition, streamflow, meteorology, and catchment physiographic attributes. The existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset includes data on topography, climate, streamflow, land cover, soil, and geology across the continental US. With CAMELS-Chem, we pair these existing attribute data for 516 catchments with atmospheric deposition data from the National Atmospheric Deposition Program and water chemistry and instantaneous discharge data from the US Geological Survey over the period from 1980 through 2018 in a relational database and corresponding dataset. The data include 18 common stream water chemistry constituents: Al, Ca, Cl, dissolved organic carbon, total organic carbon, HCO3, K, Mg, Na, total dissolved N, total organic N, NO3, dissolved oxygen, pH (field and lab), Si, SO4, and water temperature. Annual deposition loads and concentrations include hydrogen, NH4, NO3, total inorganic N, Cl, SO4, Ca, K, Mg, and Na. We demonstrate that CAMELS-Chem water chemistry data are sampled effectively across climates, seasons, and discharges for trend analysis and highlight the coincident sampling of stream constituents for process-based understanding. To motivate their use by the larger scientific community across a variety of disciplines, we show examples of how these publicly available datasets can be applied to trend detection and attribution, biogeochemical process understanding, and new hypothesis generation via data-driven techniques.</p

    Changes of T-lymphocyte subpopulation and differential expression pattern of the T-bet and GATA-3 genes in diffuse large B-cell lymphoma patients after chemotherapy

    Get PDF
    BACKGROUND AND OBJECTIVE: T cell-mediated immunity plays an important role in enhancing antitumor response.This study aimed to investigate the changes in the T-lymphocyte subpopulation and to characterize the differential expression pattern of corresponding regulatory genes in peripheral blood mononuclear cells (PBMCs) from diffuse large B cell lymphoma (DLBCL) patients before and after chemotherapy. METHODS: A total of 56 DLBCL patients were recruited for analysis of T-cell subset distribution in the peripheral blood using flow cytometry; serum interferon (IFN)-γ and interleukin (IL)-4 levels using enzyme-linked immunosorbent assays; and early growth response protein 1 (EGR-1), T-bet, GATA-binding protein 3 (GATA-3), and transforming growth factor (TGF)-β mRNA levels using quantitative reverse-transcription polymerase chain reaction. Twenty-six healthy subjects served as controls. RESULTS: The percentage of CD3(+)CD4(+)T lymphocytes in peripheral blood from DLBCL patients was significantly decreased, whereas the percentages of CD3(+)CD8(+)T and CD4(+)CD25(+)T cells were significantly increased compared to those in controls (p < 0.05). Serum levels of IFN-γ and IL-4 were also significantly lower in DLBCL patients than those in controls (p < 0.05), and the levels of EGR-1, T-bet, and GATA-3 mRNA in PBMCs were lower (2.69 ± 1.48, 9.43 ± 2.14, and 20.83 ± 9.05 fold, respectively) in DLBCL patients than those in controls. Furthermore, there was a positive association between the levels of EGR-1 and T-bet mRNA (p = 0.001). However, the level of TGF-β mRNA was significantly increased in DLBCL patients, which was inversely associated with the T-bet mRNA level (p = 0.008), but positively associated with the percentage of T regulatory cells in PBMCs (p = 0.011). After three cycles of chemotherapy, the distribution of T-lymphocyte subsets in DLBCL patients were changed, and the levels of EGR-1, T-bet, and GATA-3 mRNA were significantly increased (p < 0.05) compared to those before chemotherapy. CONCLUSIONS: These results demonstrate the changes in T-lymphocyte subpopulations and the altered expression 34 pattern of the corresponding regulatory genes in PBMCs from DLBCL patients after chemotherapy, which are associated with the response of patients to treatment. The preferential expression of the T-bet gene after chemotherapy was closely correlated with the increased expression of the EGR-1 gene and decreased expression of the TGF-β gene

    CXCR5<sup>+</sup> follicular cytotoxic T cells control viral infection in B cell follicles

    Get PDF
    During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell–derived malignancies

    Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-ß-catenin-mediated intestinal tumor growth and regeneration

    Get PDF
    Copyright © 2014 American Association for the Advancement of Science. All Rights Reserved. Most colon cancers arise from somatic mutations in the tumor suppressor gene APC (adenomatous polyposis coli), and these mutations cause constitutive activation of the Wnt-to-ß-catenin pathway in the intestinal epithelium. Because Wnt-ß-catenin signaling is required for homeostasis and regeneration of the adult intestinal epithelium, therapeutic targeting of this pathway is challenging. We found that genetic activation of the cytokine-stimulated pathway mediated by the receptor gp130, the associated Jak (Janus kinase) kinases, and the transcription factor Stat3 (signal transducer and activator of transcription 3) was required for intestinal regeneration in response to irradiation-induced damage in wild-type mice and for tumorigenesis in Apc-mutant mice. Systemic pharmacological or partial genetic inhibition of gp130-Jak-Stat3 signaling suppressed intestinal regeneration, the growth of tumors in Apc-mutant mice, and the growth of colon cancer xenografts. The growth of Apc-mutant tumors depended on gp130-Jak-Stat3 signaling for induction of the polycomb repressor Bmi-1, and the associated repression of genes encoding the cell cycle inhibitors p16 and p21. However, suppression of gp130-Jak-Stat3 signaling did not affect Wnt-ß-catenin signaling or homeostasis in the intestine. Thus, these data not only suggest a molecular mechanism for how the gp130-Jak-Stat3 pathway can promote cancer but also provide a rationale for therapeutic inhibition of Jak in colon cancer

    TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma

    No full text
    Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC
    corecore