3,523 research outputs found
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since
10 years as a tool for vibrational spectroscopy. This method has turned out
especially useful in case of large molecules that contain a M\"ossbauer active
metal center. Recent applications to iron-sulfur proteins, to iron(II) spin
crossover complexes and to tin-DNA complexes are discussed. Special emphasis is
given to the combination of nuclear inelastic scattering and density functional
calculations
Epitaxial Growth Kinetics with Interacting Coherent Islands
The Stranski-Krastanov growth kinetics of undislocated (coherent)
3-dimensional islands is studied with a self-consistent mean field rate theory
that takes account of elastic interactions between the islands. The latter are
presumed to facilitate the detachment of atoms from the islands with a
consequent decrease in their average size. Semi-quantitative agreement with
experiment is found for the time evolution of the total island density and the
mean island size. When combined with scaling ideas, these results provide a
natural way to understand the often-observed initial increase and subsequent
decrease in the width of the coherent island size distribution.Comment: 4 pages, 4 figure
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Magneto-Acoustic Spectroscopy in Superfluid 3He-B
We have used the recently discovered acoustic Faraday effect in superfluid
3He to perform high resolution spectroscopy of an excited state of the
superfluid condensate. With acoustic cavity interferometry we measure the
rotation of the plane of polarization of a transverse sound wave propagating in
the direction of magnetic field from which we determine the Zeeman energy of
the excited state. We interpret the Lande g-factor, combined with the
zero-field energies of the state, using the theory of Sauls and Serene to
calculate the strength of f -wave interactions in 3He.Comment: 4 pages, 5 figures, submitted to PRL, Aug 30th, 200
Natural equilibrium states for multimodal maps
This paper is devoted to the study of the thermodynamic formalism for a class
of real multimodal maps. This class contains, but it is larger than,
Collet-Eckmann. For a map in this class, we prove existence and uniqueness of
equilibrium states for the geometric potentials , for the largest
possible interval of parameters . We also study the regularity and convexity
properties of the pressure function, completely characterising the first order
phase transitions. Results concerning the existence of absolutely continuous
invariant measures with respect to the Lebesgue measure are also obtained
Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres : combining scattering and emission spectra
G.L. and Ch.H. highlight the financial support of the European community under the FP7 ERC starting grant 257431.Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims. We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods. We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results. Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions. Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.Publisher PDFPeer reviewe
The properties, origin and evolution of stellar clusters in galaxy simulations and observations
We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback
- …
