79 research outputs found

    Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model

    Get PDF
    We have carried out Density Matrix Renormalization Group (DMRG) calculations on the ground state of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian. The PPP model includes long-range electron correlations which are required for physically realistic modeling of conjugated polymers. We have obtained the ground state energy as a function of the dimerization δ\delta and various correlation functions and structure factors for δ=0\delta=0. From energetics, we find that while the nature of the Peierls' instabilityin polyacene is conditional and strong electron correlations enhance the dimerization. The {\it cis} form of the distortion is favoured over the {\it trans} form. However, from the analysis of correlation functions and associated structure factors, we find that polyacene is not susceptible to the formation of a bond order wave (BOW), spin density wave (SDW) or a charge density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure

    A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid

    Full text link
    A mesoscopic colloid model is developed in which a spherical colloid is represented by many interacting sites on its surface. The hydrodynamic interactions with thermal fluctuations are taken accounts in full using Dissipative Particle Dynamics, and the electrostatic interactions are simulated using Particle-Particle-Particle Mesh method. This new model is applied to investigate the electrophoretic mobility of a charged colloid under an external electric field, and the influence of salt concentration and colloid charge are systematically studied. The simulation results show good agreement with predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance Computing in Science & Engineering '1

    Quantum Monte Carlo simulations of solids

    No full text
    Published versio

    Heterocyclic compounds

    No full text

    Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming

    No full text
    International audienceBenzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry. Then, there is a lot of problems relative to this subject, like the benzenoid generation or the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this context, the computation of the local aromaticity of a given benzenoid is an important problematic since the aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. But, there exist some methods related to graph theory which can allow us to compute it. In this article, we describe how constraint programming can be useful in order to compute the aromaticity of benzenoids. Moreover we show that our method is much faster than the reference one, namely NICS
    • …
    corecore