79 research outputs found
Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model
We have carried out Density Matrix Renormalization Group (DMRG) calculations
on the ground state of long polyacene oligomers within a Pariser-Parr-Pople
(PPP) Hamiltonian. The PPP model includes long-range electron correlations
which are required for physically realistic modeling of conjugated polymers. We
have obtained the ground state energy as a function of the dimerization
and various correlation functions and structure factors for
. From energetics, we find that while the nature of the Peierls'
instabilityin polyacene is conditional and strong electron correlations enhance
the dimerization. The {\it cis} form of the distortion is favoured over the
{\it trans} form. However, from the analysis of correlation functions and
associated structure factors, we find that polyacene is not susceptible to the
formation of a bond order wave (BOW), spin density wave (SDW) or a charge
density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure
A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid
A mesoscopic colloid model is developed in which a spherical colloid is
represented by many interacting sites on its surface. The hydrodynamic
interactions with thermal fluctuations are taken accounts in full using
Dissipative Particle Dynamics, and the electrostatic interactions are simulated
using Particle-Particle-Particle Mesh method. This new model is applied to
investigate the electrophoretic mobility of a charged colloid under an external
electric field, and the influence of salt concentration and colloid charge are
systematically studied. The simulation results show good agreement with
predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance
Computing in Science & Engineering '1
Quantum Monte Carlo simulations of solids
Published versio
Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming
International audienceBenzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry. Then, there is a lot of problems relative to this subject, like the benzenoid generation or the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this context, the computation of the local aromaticity of a given benzenoid is an important problematic since the aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. But, there exist some methods related to graph theory which can allow us to compute it. In this article, we describe how constraint programming can be useful in order to compute the aromaticity of benzenoids. Moreover we show that our method is much faster than the reference one, namely NICS
- …