1,939 research outputs found

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    PyDamage: automated ancient damage identification and estimation for contigs in ancient DNAde novoassembly

    Get PDF
    DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs), including genes and even genomes, from short DNA sequencing reads. Applying this technique to metagenomic data derived from archaeological remains, such as paleofeces and dental calculus, we can investigate past microbiome functional diversity that may be absent or underrepresented in the modern microbiome gene catalogue. However, compared to modern samples, ancient samples are often burdened with environmental contamination, resulting in metagenomic datasets that represent mixtures of ancient and modern DNA. The ability to rapidly and reliably establish the authenticity and integrity of ancient samples is essential for ancient DNA studies, and the ability to distinguish between ancient and modern sequences is particularly important for ancient microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA fragmentation and cytosine deamination (observed as C-to-T transitions) are typically used to authenticate ancient samples and sequences, but existing tools for inspecting and filtering aDNA damage either compute it at the read level, which leads to high data loss and lower quality when used in combination with de novo assembly, or require manual inspection, which is impractical for ancient assemblies that typically contain tens to hundreds of thousands of contigs. To address these challenges, we designed PyDamage, a robust, automated approach for aDNA damage estimation and authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based approach to discriminate between truly ancient contigs and contigs originating from modern contamination. We test PyDamage on both on simulated aDNA data and archaeological paleofeces, and we demonstrate its ability to reliably and automatically identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de novo assembly, Pydamage opens up new doors to explore functional diversity in ancient metagenomic datasets

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure

    Nonlinear Magneto-Optical Response of ss- and dd-Wave Superconductors

    Full text link
    The nonlinear magneto-optical response of ss- and dd-wave superconductors is discussed. We carry out the symmetry analysis of the nonlinear magneto-optical susceptibility in the superconducting state. Due to the surface sensitivity of the nonlinear optical response for systems with bulk inversion symmetry, we perform a group theoretical classification of the superconducting order parameter close to a surface. For the first time, the mixing of singlet and triplet pairing states induced by spin-orbit coupling is systematically taken into account. We show that the interference of singlet and triplet pairing states leads to an observable contribution of the nonlinear magneto-optical Kerr effect. This effect is not only sensitive to the anisotropy of the gap function but also to the symmetry itself. In view of the current discussion of the order parameter symmetry of High-Tc_c superconductors, results for a tetragonal system with bulk singlet pairing for various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript

    General Relativistic Scalar Field Models in the Large

    Full text link
    For a class of scalar fields including the massless Klein-Gordon field the general relativistic hyperboloidal initial value problems are equivalent in a certain sense. By using this equivalence and conformal techniques it is proven that the hyperboloidal initial value problem for those scalar fields has an unique solution which is weakly asymptotically flat. For data sufficiently close to data for flat spacetime there exist a smooth future null infinity and a regular future timelike infinity.Comment: 22 pages, latex, AGG 1

    Elektrophysikalische Aquametrie

    Get PDF

    On asymptotically flat solutions of Einstein's equations periodic in time II. Spacetimes with scalar-field sources

    Full text link
    We extend the work in our earlier article [4] to show that time-periodic, asymptotically-flat solutions of the Einstein equations analytic at scri, whose source is one of a range of scalar-field models, are necessarily stationary. We also show that, for some of these scalar-field sources, in stationary, asymptotically-flat solutions analytic at scri, the scalar field necessarily inherits the symmetry. To prove these results we investigate miscellaneous properties of massless and conformal scalar fields coupled to gravity, in particular Bondi mass and its loss.Comment: 29 pages, published in Class. Quant. Grav. Replaced. Typos corrected, version which appeared in Class. Quant.Gra

    Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets

    Full text link
    The spin-lattice relaxation time τSL\tau_{SL} is a key quantity both for the dynamical response of ferromagnets excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths we calculate τSL\tau_{SL} for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized photoemission experiments. We argue that the time scale for τSL\tau_{SL} in metals is essentially given by the spin-orbit induced magnetocrystalline anisotropy energy.Comment: 18 pages revtex, 5 uuencoded figure
    corecore