149 research outputs found

    SARS-CoV-2 and Guillain-Barré syndrome: AIDP variant with a favourable outcome.

    Get PDF
    The spectrum of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 infection (SARS-CoV-2), includes different neurologic manifestations of the central and peripheral nervous system. From March through April 2020, in two university hospitals located in western Switzerland, we examined three patients with Guillain-Barré syndrome (GBS) following SARS-CoV-2. These cases were characterized by a primary demyelinating electrophysiological pattern (Acute inflammatory demyelinating polyneuropathy or AIDP) and a less severe disease course compared to recently published case series. Clinical improvement was observed in all patients at week five. One patient was discharged from hospital after full recovery with persistence of minor neurological signs (areflexia). Two of the three patients remained hospitalized: one was able to walk and the other could stand up with assistance. We report three cases of typical GBS (AIDP) occurring after SARS-CoV-2 infection and presenting with a favourable clinical course. Given the interval between COVID-19-related symptoms and neurological manifestations (mean of 15 days) we postulate a secondary immune-mediated mechanism rather than direct viral damage

    OCTAD-S: Digital Fast Fourier Transform Spectrometers by FPGA

    Full text link
    We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.Comment: 20 pages, 7 figures, accepted for publication in Earth, Planets and Spac

    Hyperpycnites within the Devonian-Carboniferous flysch of the Carpatho-Balkanides (Kostadinovica, eastern Serbia)

    Get PDF
    This study presents new discoveries of vascular plants and the trace fossil Dictyodora liebeana (GEINITZ) from the Devonian–Carboniferous Kučaj-Zvonce flysch of the Carpatho-Balkanides and the implications of this fossil association for its sedimentary setting. The occurrence of the described plant debris in a deep-marine environment indicates the presence of hyperpycnites within the siliciclastic turbidites exposed at the Kostadinovica locality. The sedimentological data and the characteristics of the fossil material support the proposed model in which the sediment was at least partially transported by hyperpycnite currents. Furthermore, based on the assessment to similar palaeofloras from comparable formations, the age of the fossil plants can be determined as Early Carboniferous. This can be used as an additional biostratigraphic criterion given the relative abundance of vascular plants in other localities of the Kučaj-Zvonce flysch described in previous studies. The age and the depositional setting of the succession is further better constrained by the first observation of Dictyodora liebeana (GEINITZ) in the Carpatho-Balkanides of Serbia.</p

    Linking remote sensing, in situ and laboratory spectroscopy for a Ryugu analog meteorite sample

    Get PDF
    In 2022 JAXA issued an Announcement of Opportunity (AO) for receiving Hayabusa2 samples returned to Earth. We responded to the AO submitting a proposal based on using a multi-prong approach to achieve two main goals. The first goal is to address the subdued contrast of remote-sensing observations compared to measurements performed under laboratory conditions on analog materials. For this we will link the hyperspectral and imaging data collected from the spacecraft and the in-situ observations from the MASCOT lander instruments (MARA and MASCam) with laboratory-based measurements of Hayabusa2 samples using bi-directional reflectance spectroscopy under simulated asteroid surface conditions from UV to MIR/FIR achieved using three Bruker Vertex 80 V spectrometers in the Planetary Spectroscopy Laboratory. The second goal is the investigation of the mineralogy and organic matter of the samples collected by Hayabusa2, to better understanding the evolution of materials characterizing Ryugu and in general of protoplanetary disk and organic matter, investigating the aqueous alteration that took place in the parent body, and comparing the results with data collected from pristine carbonaceous chondrite analog meteorites. Spectral data will be complemented by Raman spectroscopy under simulated asteroid surface conditions, X-ray diffraction, would also allow us to define the bulk mineralogy of the samples as well as investigate the presence and nature of organic matter within the samples. In situ mineralogical and geochemical characterization will involve a pre-characterization of the sample fragments through scanning electron microscopy low voltage electron dispersive X-ray (EDX) maps, and micro IR analyses of the fragments. If allowed, a thin section of one grain will be used for electron microprobe analyses to geochemically characterize its mineralogical composition. To train our data collection and analysis methods on a realistic sample, we selected a piece of the Mukundpura meteorite, as one of the closer analogs to Ryugu’s surface (Ray et al., Planetary and Space Science, 2018, 151, 149–154). The Mukundpura chunk we selected for this study measures 3 mm in its maximum dimension, and we chose it so to have a test sample of the same size as the Hayabusa2 grain we requested in our proposal to JAXA’s AO. The test gave us confidence that we can measure with good SNR measurements in bi-directional reflectance for samples around 3 mm in size (see Figures 3, 4 below). To address our second goal the spectral data was complemented by Raman spectroscopy measured again under simulated asteroid surface conditions in our Raman Mineralogy and Biodetection Laboratory at DLR

    Effect of idler terminations on the conversion loss for THz Schottky diode harmonic mixers

    Get PDF
    Efficient and reliable frequency converters, preferably operating at room temperature, are critical components for frequency-stabilizing terahertz sources. In this work, we present the analysis of optimum configurations for Schottky diode-based x4, x6, and x8 harmonic mixers operating at 2.3 THz, 3.5 THz, and 4.7 THz respectively. Detailed large-signal analysis of the two basic single-ended Z- and Y-mixers was carried out using a standard Schottky-diode model. For each case, the conversion loss was minimized by finding optimal embedding impedances at RF, LO, and IF frequencies. The analysis shows that the Y-mixer has less conversion loss at a low LO pump power. However, the Z-mixer provides reduced loss with increasing harmonic index and pump power due to the associated power dissipation in idler circuits. The results provide preliminary design guidelines for room- temperature frequency converters and their use in phase-locked loop applications

    Pattern of paresis in ALS is consistent with the physiology of the corticomotoneuronal projections to different muscle groups

    Get PDF
    OBJECTIVE: A recent neuroanatomical staging scheme of amyotrophic lateral sclerosis (ALS) indicates that a cortical lesion may spread, as a network disorder, both at the cortical level and via corticofugal tracts, including corticospinal projections providing direct monosynaptic input to α-motoneurons. These projections are involved preferentially and early in ALS. If these findings are clinically relevant, the pattern of paresis in ALS should primarily involve those muscle groups that receive the strongest direct corticomotoneuronal (CM) innervation. METHODS: In a large cohort (N=436), we analysed retrospectively the pattern of muscle paresis in patients with ALS using the UK Medical Research Council (MRC) scoring system; we subsequently carried out two independent prospective studies in two smaller groups (N=92 and N=54). RESULTS: The results indicated that a characteristic pattern of paresis exists. When pairs of muscle groups were compared within patients, the group known to receive the more pronounced CM connections was significantly weaker. Within patients, there was greater relative weakness (lower MRC score) in thumb abductors versus elbow extensors, for hand extensors versus hand flexors and for elbow flexors versus elbow extensors. In the lower limb, knee flexors were relatively weaker than extensors, and plantar extensors were weaker than plantar flexors. CONCLUSIONS: These findings were mostly significant (p<0.01) for all six pairs of muscles tested and provide indirect support for the concept that ALS may specifically affect muscle groups with strong CM connections. This specific pattern could help to refine clinical and electrophysiological ALS diagnostic criteria and complement prospective clinicopathological correlation studies
    corecore