25 research outputs found
Local Membrane Curvature Pins and Guides Excitable Membrane Waves in Chemotactic and Macropinocytic Cells - Biomedical Insights From an Innovative Simple Model
PIP3 dynamics observed in membranes are responsible for the protruding edge
formation in cancer and amoeboid cells. The mechanisms that maintain those PIP3
domains in three-dimensional space remain elusive, due to limitations in observation
and analysis techniques. Recently, a strong relation between the cell geometry, the
spatial confinement of the membrane, and the excitable signal transduction system has
been revealed by Hörning and Shibata (2019) using a novel 3D spatiotemporal analysis
methodology that enables the study of membrane signaling on the entire membrane
(Hörning and Shibata, 2019). Here, using 3D spatial fluctuation and phase map analysis
on actin polymerization inhibited Dictyostelium cells, we reveal a spatial asymmetry of
PIP3 signaling on the membrane that is mediated by the contact perimeter of the plasma
membraneâthe spatial boundary around the cell-substrate adhered area on the plasma
membrane. We show that the contact perimeter guides PIP3 waves and acts as a
pinning site of PIP3 phase singularities, that is, the center point of spiral waves. The
contact perimeter serves as a diffusion influencing boundary that is regulated by a cell
size- and shape-dependent curvature. Our findings suggest an underlying mechanism
that explains how local curvature can favor actin polymerization when PIP3 domains get
pinned at the curved protrusive membrane edges in amoeboid cells
Untersuchungen zu Nahrungsangebot und -aufnahme von Legehennen aus dem GrĂŒnauslauf
Haltung mit Zugang zu GrĂŒnauslĂ€ufen fĂŒr Legehennen nimmt in Deutschland zu. Ziel des Beitrags ist eine Ăbersicht ĂŒber Methoden zur Quantifizierung von Nahrungsangebot bzw. -aufnahme pflanzlicher und tierischer Komponenten, welche in dreijĂ€hrigen Untersuchungen mit MobilstĂ€llen angewendet wurden zu geben. Verhaltensbeobachtungen erbrachten, dass im Mittel 50 - 70 % der Hennen im Auslauf waren, vor allem mit Nahrungssuche beschĂ€ftigt. Ein hoher Verbrauch an pflanzlicher Biomasse wurde kalkuliert (260 g Frischmasse/Tag). Die VegetationsverĂ€nderungen wĂ€hrend der Beweidungsphasen zeigten Vorlieben fĂŒr bestimmte Pflanzenarten. Dies ergaben auch Analysen von Phytolyten oder Alkanen im Kot der Tiere. Das Angebot tierischer Komponenten wurde mit verschiedenen Methoden gemessen (Spatenproben, Barberfallen, KescherfĂ€nge). Das geringe Probengewicht weist jedoch darauf hin, dass diese Komponenten nur wenig zur NĂ€hrstoffversorgung der HĂŒhner beitragen können
Rigidity Matching between Cells and the Extracellular Matrix Leads to the Stabilization of Cardiac Conduction
Biomechanical dynamic interactions between cells and the extracellular environment dynamically regulate physiological tissue behavior in living organisms, such as that seen in tissue maintenance and remodeling. In this study, the substrate-induced modulation of synchronized beating in cultured cardiomyocyte tissue was systematically characterized on elasticity-tunable substrates to elucidate the effect of biomechanical coupling. We found that myocardial conduction is significantly promoted when the rigidity of the cell culture environment matches that of the cardiac cells (4 kiloPascals). The stability of spontaneous target wave activity and calcium transient alternans in high frequency-paced tissue were both enhanced when the cell substrate and cell tissue showed the same rigidity. By adapting a simple theoretical model, we reproduced the experimental trend on the rigidity matching for the synchronized excitation. We conclude that rigidity matching in cell-to-substrate interactions critically improves cardiomyocyte-tissue synchronization, suggesting that mechanical coupling plays an essential role in the dynamic activity of the beating heart
Local membrane curvature pins and guides excitable membrane waves in chemotactic and macropinocytic cells : biomedical insights from an innovative simple model
PIP3 dynamics observed in membranes are responsible for the protruding edge formation in cancer and amoeboid cells. The mechanisms that maintain those PIP3 domains in three-dimensional space remain elusive, due to limitations in observation and analysis techniques. Recently, a strong relation between the cell geometry, the spatial confinement of the membrane, and the excitable signal transduction system has been revealed by Hörning and Shibata (2019) using a novel 3D spatiotemporal analysis methodology that enables the study of membrane signaling on the entire membrane (Hörning and Shibata, 2019). Here, using 3D spatial fluctuation and phase map analysis on actin polymerization inhibited Dictyostelium cells, we reveal a spatial asymmetry of PIP3 signaling on the membrane that is mediated by the contact perimeter of the plasma membrane - the spatial boundary around the cell-substrate adhered area on the plasma membrane. We show that the contact perimeter guides PIP3 waves and acts as a pinning site of PIP3 phase singularities, that is, the center point of spiral waves. The contact perimeter serves as a diffusion influencing boundary that is regulated by a cell size- and shape-dependent curvature. Our findings suggest an underlying mechanism that explains how local curvature can favor actin polymerization when PIP3 domains get pinned at the curved protrusive membrane edges in amoeboid cells
Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue
The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( Eâ12kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.Deutsche Forschungsgemeinschaf
Optimization of mechanosensitive cross-talk between matrix stiffness and protein density : independent matrix properties regulate spreading dynamics of myocytes
Cells actively sense differences in topology, matrix elasticity and protein composition of the extracellular microenvironment and adapt their function and morphology. In this study, we focus on the cross-talk between matrix stiffness and protein coating density that regulates morphology and proliferation dynamics of single myocytes. For this, C2C12 myocytes were monitored on L-DOPA functionalized hydrogels of 22 different elasticity and fibronectin density compositions. Static images were recorded and statistically analyzed to determine morphological differences and to identify the optimized extracellular matrix (ECM). Using that information, selected ECMs were used to study the dynamics before and after cell proliferation by statistical comparison of distinct cell states. We observed a fibronectin-density-independent increase of the projected cell area until 12 kPa. Additionally, changes in fibronectin density led to an area that was optimum at about 2.6 ÎŒg/cm2, which was confirmed by independent F-actin analysis, revealing a maximum actin-filament-to-cell-area ratio of 7.5%. Proliferation evaluation showed an opposite correlation between cell spreading duration and speed to matrix elasticity and protein density, which did not affect cell-cycle duration. In summary, we identified an optimized ECM composition and found that independent matrix properties regulate distinct cell characteristics
Optical ultrastructure of large mammalian hearts recovers discordant alternans by in silico data assimilation
Understanding and predicting the mechanisms promoting the onset and sustainability of cardiac arrhythmias represent a primary concern in the scientific and medical communities still today. Despite the long-lasting effort in clinical and physico-mathematical research, a critical aspect to be fully characterized and unveiled is represented by spatiotemporal alternans patterns of cardiac excitation. The identification of discordant alternans and higher-order alternating rhythms by advanced data analyses as well as their prediction by reliable mathematical models represents a major avenue of research for a broad and multidisciplinary scientific community. Current limitations concern two primary aspects: 1) robust and general-purpose feature extraction techniques and 2) in silico data assimilation within reliable and predictive mathematical models. Here, we address both aspects. At first, we extend our previous works on Fourier transformation imaging (FFI), applying the technique to whole-ventricle fluorescence optical mapping. Overall, we identify complex spatial patterns of voltage alternans and characterize higher-order rhythms by a frequency-series analysis. Then, we integrate the optical ultrastructure obtained by FFI analysis within a fine-tuned electrophysiological mathematical model of the cardiac action potential. We build up a novel data assimilation procedure demonstrating its reliability in reproducing complex alternans patterns in two-dimensional computational domains. Finally, we prove that the FFI approach applied to both experimental and simulated signals recovers the same information, thus closing the loop between the experiment, data analysis, and numerical simulations.Deutsche Forschungsgemeinschaf
Wave-train induced unpinning of weakly anchored vortices in excitable media
A free vortex in excitable media can be displaced and removed by a
wave-train. However, simple physical arguments suggest that vortices anchored
to large inexcitable obstacles cannot be removed similarly. We show that
unpinning of vortices attached to obstacles smaller than the core radius of the
free vortex is possible through pacing. The wave-train frequency necessary for
unpinning increases with the obstacle size and we present a geometric
explanation of this dependence. Our model-independent results suggest that
decreasing excitability of the medium can facilitate pacing-induced removal of
vortices in cardiac tissue.Comment: Published versio
Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions
An Author Correction to this article was published on 06 March 2018. This article has been updated.A new class of supramolecular hydrogels, cross-linked by host-guest interactions between ÎČ-cyclodextrin (ÎČCD) and adamantane, were designed for the dynamic regulation of cell-substrate interactions. The initial substrate elasticity can be optimized by selecting the molar fraction of host- and guest monomers for the target cells. Moreover, owing to the reversible nature of host-guest interactions, the magnitude of softening and stiffening of the substrate can be modulated by varying the concentrations of free, competing host molecules (ÎČCD) in solutions. By changing the substrate elasticity at a desired time point, it is possible to switch the micromechanical environments of cells. We demonstrated that the Youngâs modulus of our âhost-guest gelsâ, 4â11âkPa, lies in an optimal range not only for static (ex situ) but also for dynamic (in situ) regulation of cell morphology and cytoskeletal ordering of myoblasts. Compared to other stimulus-responsive materials that can either change the elasticity only in one direction or rely on less biocompatible stimuli such as UV light and temperature change, our supramolecular hydrogel enables to reversibly apply mechanical cues to various cell types in vitro without interfering cell viability