632 research outputs found
Performance analysis and optimization of the JOREK code for many-core CPUs
This report investigates the performance of the JOREK code on the Intel
Knights Landing and Skylake processor architectures. The OpenMP scaling of the
matrix construction part of the code was analyzed and improved synchronization
methods were implemented. A new switch was implemented to control the number of
threads used for the linear equation solver independently from other parts of
the code. The matrix construction subroutine was vectorized, and the data
locality was also improved. These steps led to a factor of two speedup for the
matrix construction
Adapting Quality Assurance to Adaptive Systems: The Scenario Coevolution Paradigm
From formal and practical analysis, we identify new challenges that
self-adaptive systems pose to the process of quality assurance. When tackling
these, the effort spent on various tasks in the process of software engineering
is naturally re-distributed. We claim that all steps related to testing need to
become self-adaptive to match the capabilities of the self-adaptive
system-under-test. Otherwise, the adaptive system's behavior might elude
traditional variants of quality assurance. We thus propose the paradigm of
scenario coevolution, which describes a pool of test cases and other
constraints on system behavior that evolves in parallel to the (in part
autonomous) development of behavior in the system-under-test. Scenario
coevolution offers a simple structure for the organization of adaptive testing
that allows for both human-controlled and autonomous intervention, supporting
software engineering for adaptive systems on a procedural as well as technical
level.Comment: 17 pages, published at ISOLA 201
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
The implementation of a resistive-wall extension to the non-linear MHD-code
JOREK via a coupling to the vacuum-field code STARWALL is presented along with
first applications and benchmark results. Also, non-linear saturation in the
presence of a resistive wall is demonstrated. After completion of the ongoing
verification process, this code extension will allow to perform non-linear
simulations of MHD instabilities in the presence of three-dimensional resistive
walls with holes for limited and X-point plasmas.Comment: Contribution for "Theory Of Fusion Plasmas, Joint Varenna - Lausanne
International Workshop, Villa Monastero, Varenna, Italy (27.-31.8.2012)",
accepted for publication in Journal of Physics Conference Serie
Investigation of the influence of the symmetry of membership functions in the fuzzy controller on the quality of MPPT regulation in the photovoltaic system
The paper presents the results of the investigation of the influence of asymmetric membership functions in a fuzzy controller on the quality of MPPT regulation in the photovoltaic system. Comparison of the quality of fuzzy MPPT regulation with symmetrical and asymmetric membership functions is carried out. The results of the research showed the advantage of using asymmetric membership functions in the MPPT algorithm with fuzzy logic
Adaptable transition systems
We present an essential model of adaptable transition systems inspired by white-box approaches to adaptation and based on foundational models of component based systems. The key feature of adaptable transition systems are control propositions, imposing a clear separation between ordinary, functional behaviours and adaptive ones. We instantiate our approach on interface automata yielding adaptable interface automata, but it may be instantiated on other foundational models of component-based systems as well. We discuss how control propositions can be exploited in the specification and analysis of adaptive systems, focusing on various notions proposed in the literature, like adaptability, control loops, and control synthesis
A Component-oriented Framework for Autonomous Agents
The design of a complex system warrants a compositional methodology, i.e.,
composing simple components to obtain a larger system that exhibits their
collective behavior in a meaningful way. We propose an automaton-based paradigm
for compositional design of such systems where an action is accompanied by one
or more preferences. At run-time, these preferences provide a natural fallback
mechanism for the component, while at design-time they can be used to reason
about the behavior of the component in an uncertain physical world. Using
structures that tell us how to compose preferences and actions, we can compose
formal representations of individual components or agents to obtain a
representation of the composed system. We extend Linear Temporal Logic with two
unary connectives that reflect the compositional structure of the actions, and
show how it can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components
- …