64 research outputs found

    Pattern-based phylogenetic distance estimation and tree reconstruction

    Get PDF
    We have developed an alignment-free method that calculates phylogenetic distances using a maximum likelihood approach for a model of sequence change on patterns that are discovered in unaligned sequences. To evaluate the phylogenetic accuracy of our method, and to conduct a comprehensive comparison of existing alignment-free methods (freely available as Python package decaf+py at http://www.bioinformatics.org.au), we have created a dataset of reference trees covering a wide range of phylogenetic distances. Amino acid sequences were evolved along the trees and input to the tested methods; from their calculated distances we infered trees whose topologies we compared to the reference trees. We find our pattern-based method statistically superior to all other tested alignment-free methods on this dataset. We also demonstrate the general advantage of alignment-free methods over an approach based on automated alignments when sequences violate the assumption of collinearity. Similarly, we compare methods on empirical data from an existing alignment benchmark set that we used to derive reference distances and trees. Our pattern-based approach yields distances that show a linear relationship to reference distances over a substantially longer range than other alignment-free methods. The pattern-based approach outperforms alignment-free methods and its phylogenetic accuracy is statistically indistinguishable from alignment-based distances.Comment: 21 pages, 3 figures, 2 table

    Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms

    Full text link
    We have experimentally realized a hybrid trap for ultracold paramagnetic rubidium and diamagnetic ytterbium atoms by combining a bichromatic optical dipole trap for ytterbium with a Ioffe-Pritchard-type magnetic trap for rubidium. In this hybrid trap, sympathetic cooling of five different ytterbium isotopes through elastic collisions with rubidium was achieved. A strong dependence of the interspecies collisional cross section on the mass of the ytterbium isotope was observed.Comment: 4 pages, 4 figure

    Predicting the influence of a p2-symmetric substrate on molecular self-organization with an interaction-site model

    Get PDF
    An interaction-site model can a priori predict molecular selforganisation on a new substrate in Monte Carlo simulations. This is experimentally confirmed with scanning tunnelling microscopy on Fre´chet dendrons of a pentacontane template. Local and global ordering motifs, inclusion molecules and a rotated unit cell are correctly predicted

    Evolutionary distances in the twilight zone -- a rational kernel approach

    Get PDF
    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.Comment: to appear in PLoS ON

    Simultaneous identification of long similar substrings in large sets of sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequence comparison faces new challenges today, with many complete genomes and large libraries of transcripts known. Gene annotation pipelines match these sequences in order to identify genes and their alternative splice forms. However, the software currently available cannot simultaneously compare sets of sequences as large as necessary especially if errors must be considered.</p> <p>Results</p> <p>We therefore present a new algorithm for the identification of almost perfectly matching substrings in very large sets of sequences. Its implementation, called ClustDB, is considerably faster and can handle 16 times more data than VMATCH, the most memory efficient exact program known today. ClustDB simultaneously generates large sets of exactly matching substrings of a given minimum length as seeds for a novel method of match extension with errors. It generates alignments of maximum length with a considered maximum number of errors within each overlapping window of a given size. Such alignments are not optimal in the usual sense but faster to calculate and often more appropriate than traditional alignments for genomic sequence comparisons, EST and full-length cDNA matching, and genomic sequence assembly. The method is used to check the overlaps and to reveal possible assembly errors for 1377 <it>Medicago truncatula </it>BAC-size sequences published at <url>http://www.medicago.org/genome/assembly_table.php?chr=1</url>.</p> <p>Conclusion</p> <p>The program ClustDB proves that window alignment is an efficient way to find long sequence sections of homogenous alignment quality, as expected in case of random errors, and to detect systematic errors resulting from sequence contaminations. Such inserts are systematically overlooked in long alignments controlled by only tuning penalties for mismatches and gaps.</p> <p>ClustDB is freely available for academic use.</p

    Fast algorithms for computing sequence distances by exhaustive substring composition

    Get PDF
    The increasing throughput of sequencing raises growing needs for methods of sequence analysis and comparison on a genomic scale, notably, in connection with phylogenetic tree reconstruction. Such needs are hardly fulfilled by the more traditional measures of sequence similarity and distance, like string edit and gene rearrangement, due to a mixture of epistemological and computational problems. Alternative measures, based on the subword composition of sequences, have emerged in recent years and proved to be both fast and effective in a variety of tested cases. The common denominator of such measures is an underlying information theoretic notion of relative compressibility. Their viability depends critically on computational cost. The present paper describes as a paradigm the extension and efficient implementation of one of the methods in this class. The method is based on the comparison of the frequencies of all subwords in the two input sequences, where frequencies are suitably adjusted to take into account the statistical background

    SeqAn An efficient, generic C++ library for sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> would not have been possible without advanced assembly algorithms. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use.</p> <p>Results</p> <p>To remedy this trend we propose the use of SeqAn, a library of efficient data types and algorithms for sequence analysis in computational biology. SeqAn comprises implementations of existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm testing and development. In this paper we describe the design and content of SeqAn and demonstrate its use by giving two examples. In the first example we show an application of SeqAn as an experimental platform by comparing different exact string matching algorithms. The second example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate that our implementation is very efficient and versatile to use.</p> <p>Conclusion</p> <p>We anticipate that SeqAn greatly simplifies the rapid development of new bioinformatics tools by providing a collection of readily usable, well-designed algorithmic components which are fundamental for the field of sequence analysis. This leverages not only the implementation of new algorithms, but also enables a sound analysis and comparison of existing algorithms.</p

    Complete Genome Viral Phylogenies Suggests the Concerted Evolution of Regulatory Cores and Accessory Satellites

    Get PDF
    We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions
    corecore