38 research outputs found

    Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography

    Get PDF
    Ultrastructure and intercellular interaction of Ignicoccus hospitalis and Nanoarchaeum equitans were investigated using two different electron microscopy approaches, by three-dimensional reconstructions from serial sections, and by electron cryotomography. Serial sections were assembled into 3D reconstructions, for visualizing the unusual complexity of I. hospitalis, its huge periplasmic space, the vesiculating cytoplasmic membrane, and the outer membrane. The cytoplasm contains fibres which are reminiscent to a cytoskeleton. Cell division in I. hospitalis is complex, and different to that in Euryarchaeota or Bacteria. An irregular invagination of the cytoplasmic membrane is followed by separation of the two cytoplasms. Simultaneous constriction of cytoplasmic plus outer membrane is not observed. Cells of N. equitans show a classical mode of cell division, by constriction in the mid-plane. Their cytoplasm exhibits two types of fibres, elongated and ring-shaped. Electron micrographs of contact sites between I. hospitalis and N. equitans exhibit two modes of interaction. One is indirect and mediated by thin fibres; in other cells the two cell surfaces are in direct contact. The two membranes of I. hospitalis cells are frequently seen in direct contact, possibly a prerequisite for transporting metabolites or substrates from the cytoplasm of one cell to the other. Rarely, a transport based on cargo vesicles is observed between I. hospitalis and N. equitans

    Ultrastructural investigation methods for Trypanosoma brucei.

    No full text
    Trypanosoma brucei is a unicellular parasite causing African sleeping sickness in cattle and humans. Due to the ease with which these cells can be cultured and genetically manipulated, it has emerged as a model organism for the kinetoplastids.In this chapter we describe the preparation of T. brucei for transmission electron microscopy. A thorough explanation of conventional sample preparation through chemical fixation of whole cells and detergent extracted cytoskeletons followed by dehydration and Epon embedding is given. We also introduce a novel high-pressure freezing protocol, which followed by rapid freeze substitution and HM20 embedding generates T. brucei samples displaying good cell morphology, which are suitable for immunocytochemistry

    Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei

    Get PDF
    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects

    Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei

    No full text
    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects

    Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans.

    No full text
    The intracellular amastigote stages of parasites such as Leishmania are often referred to as aflagellate. They do, however, possess a short axoneme of cryptic function. Here, our examination of the structure of this axoneme leads to a testable hypothesis of its role in the cell biology of pathogenicity. We show a striking similarity between the microtubule axoneme structure of the Leishmania mexicana parasite infecting a macrophage and vertebrate primary cilia. In both, the 9-fold microtubule doublet symmetry is broken by the incursion of one or more microtubule doublets into the axoneme core, giving rise to an architecture that we term here the 9v (variable) axoneme. Three-dimensional reconstructions revealed that no particular doublet initiated the symmetry break, and moreover it often involved 2 doublets. The tip of the L. mexicana flagellum was frequently intimately associated with the macrophage vacuole membrane. We propose that the main function of the amastigote flagellum is to act as a sensory organelle with important functions in host-parasite interactions and signaling in the intracellular stage of the L. mexicana life cycle
    corecore