38 research outputs found

    Clustering of Unhealthy Behaviors in the Aerobics Center Longitudinal Study

    Get PDF
    Background Clustering of unhealthy behaviors has been reported in previous studies; however the link with all-cause mortality and differences between those with and without chronic disease requires further investigation. Objectives To observe the clustering effects of unhealthy diet, fitness, smoking, and excessive alcohol consumption in adults with and without chronic disease and to assess all-cause mortality risk according to the clustering of unhealthy behaviors. Methods Participants were 13,621 adults (aged 20–84) from the Aerobics Center Longitudinal Study. Four health behaviors were observed (diet, fitness, smoking, and drinking). Baseline characteristics of the study population and bivariate relations between pairs of the health behaviors were evaluated separately for those with and without chronic disease using cross-tabulation and a chi-square test. The odds of partaking in unhealthy behaviors were also calculated. Latent class analysis (LCA) was used to assess clustering. Cox regression was used to assess the relationship between the behaviors and mortality. Results The four health behaviors were related to each other. LCA results suggested that two classes existed. Participants in class 1 had a higher probability of partaking in each of the four unhealthy behaviors than participants in class 2. No differences in health behavior clustering were found between participants with and without chronic disease. Mortality risk increased relative to the number of unhealthy behaviors participants engaged in. Conclusion Unhealthy behaviors cluster together irrespective of chronic disease status. Such findings suggest that multi-behavioral intervention strategies can be similar in those with and without chronic disease

    Pétrographie et altération de la matière organique du gisement de plomb-zinc-cuivre de Beddiane, district de Touissit- bou Beker, Maroc nord oriental

    No full text
    Reflectance measurements and organic petrography were used to study altered organic matter in the dolomitic Middle Jurassic Beddiane sequence hosting the Beddiane lead–zinc deposit. Organic matter occurs in the lower dolostone units of the formation where zinc sulfide mineralization prevails. The upper units, where lead sulfide mineralization is dominant, contain lesser amounts of organic matter. The organic matter in the Beddiane sequence consists of macerals, amorphous kerogen, and solid bitumen, inertinite and vitrinite are ubiquitous. The amount of exinite increases toward mineralized areas but the ratio exinite/kerogen remains constant. Two types of vitrinite are considered on the basis of their reflectance: Vt1 with low reflectance values (0.3–0.5%) and Vt2 with higher values (0.7–1.25%). The ratio Vt1/Vt2 increases and the reflectance values for Vt1 decrease toward the zinc-prevailing units, Organic matter associated with the mineralization exhibits features such as oxidation halos and desiccation cracks, together with a low-fluorescent exinite. The association of the kerogen content, the trend in reflectance values, and the alteration features of the Mississippi Valley-type Beddiane deposit support the hypothesis that the regional flow of hot brines associated with the mineralization process was the cause of anomalous heating, that the occurrence of exinite maceral and its associated gas played a role in the ore deposition, and that the new chemical equilibrium reached by the zinc-dominant host rock after ore deposition is responsible for the suppressed reflectance values within and near the ore deposits. </jats:p

    Cross-Modal Calibration of Vestibular Afference for Human Balance.

    No full text
    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance

    Somatosensory-vestibular conditioning.

    No full text
    <p>(A) Sway of a typical subject during the pre- and post-conditioning phases with the sway modulated signal. The movement-coupled galvanic stimulus created a large, predominantly lateral sway, which was reversed by the somatosensory conditioning. (B) Group mean lateral sway and 95% CI for the 4 trials (N = 8; * P < 0.05 by ANOVA).</p

    Experiment.

    No full text
    <p>(A) Subjects stood on a foam pad. Signals from a tri-axial angular velocity sensor secured to the head were used to determine instantaneous head angular velocity (ω<sub>G</sub>) about the GVS axis. This signal was passed through the canal transfer function identified by Goldberg and Fernandez [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0124532#pone.0124532.ref010" target="_blank">10</a>] to create the galvanic stimulus (GVS) that would evoke the pattern of afferent neuron firing that would arise from the head motion, and then scaled to 0.125 mA per deg.s-1. The bipolar stimulus (GVS) is delivered at the mastoid processes. This galvanic response, added to the natural stimulus, amplified the afferent response to the natural movement, and when subtracted (reverse stimulus polarity) attenuated the afferent response. (B) In each trial, subjects stood for 40 s as baseline before the GVS was delivered. Its effects were determined with the eyes shut before and after a 240 s period of conditioning with the eyes open.</p

    Model of vestibular sensory control for balance.

    No full text
    <p>Motion sensed by the vestibular system (gray arrows: sensed ω<sub>v</sub>) is aligned with desired motion (desired ω<sub>v</sub>) by a forward prediction of the vestibular response to the command (predicted ω<sub>v</sub>) to identify disturbances (exafference signal). Disturbances are corrected by passing exafference through an inverse model of the motor response (motor command mc to sensed ω<sub>v</sub>). We change vestibular afferent gain at xM. Motor reflex responses are probed with an independent perturbation (δ-GVS). Initially, a gain change creates an exafferent signal that increases sway as it is not aligned with predicted ω<sub>v</sub>. When conditioned with another sensory channel, the forward model changes the exafference to reafference, which is cancelled. The perturbation, δ-GVS, evokes the same balance response in the calibrated system.</p

    Vestibular reflex responses to galvanic stimuli.

    No full text
    <p>(A) For a typical subject, responses in right tensor fascia lata muscle (TFL) muscle measured as cumulant density to stochastic galvanic stimulation are shown for each GVS modulation stimulus, before (gray) and after (black) visual conditioning. The biphasic short-latency (~50ms) and long-latency responses are evident. (B) Group mean of peak medium latency response amplitude with 95% CIs in medial gastrocnemius (MG) and TFL. * P < 0.05.</p
    corecore