57 research outputs found

    Hematological Changes as Prognostic Indicators of Survival: Similarities Between Gottingen Minipigs, Humans, and Other Large Animal Models

    Get PDF
    The animal efficacy rule addressing development of drugs for selected disease categories has pointed out the need to develop alternative large animal models. Based on this rule, the pathophysiology of the disease in the animal model must be well characterized and must reflect that in humans. So far, manifestations of the acute radiation syndrome (ARS) have been extensively studied only in two large animal models, the non-human primate (NHP) and the canine. We are evaluating the suitability of the minipig as an additional large animal model for development of radiation countermeasures. We have previously shown that the Gottingen minipig manifests hematopoietic ARS phases and symptoms similar to those observed in canines, NHPs, and humans.We establish here the LD50/30 dose (radiation dose at which 50% of the animals succumb within 30 days), and show that at this dose the time of nadir and the duration of cytopenia resemble those observed for NHP and canines, and mimic closely the kinetics of blood cell depletion and recovery in human patients with reversible hematopoietic damage (H3 category, METREPOL approach). No signs of GI damage in terms of diarrhea or shortening of villi were observed at doses up to 1.9 Gy. Platelet counts at days 10 and 14, number of days to reach critical platelet values, duration of thrombocytopenia, neutrophil stress response at 3 hours and count at 14 days, and CRP-to-platelet ratio were correlated with survival. The ratios between neutrophils, lymphocytes and platelets were significantly correlated with exposure to irradiation at different time intervals.As a non-rodent animal model, the minipig offers a useful alternative to NHP and canines, with attractive features including ARS resembling human ARS, cost, and regulatory acceptability. Use of the minipig may allow accelerated development of radiation countermeasures

    HemaMaxâ„¢, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates

    Get PDF
    HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin

    Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line

    No full text
    AbstractUsing the C6 glioma cell as a paradigm, we found that (i) the clonogenicity of C6 cells is several orders of magnitude higher than the percentage of SP cells; (ii) non-SP cells are able to generate SP cells, and conversely SP cells generate non-SP cells; (iii) non-SP sorted cells behave as tumorigenic cells. Hence, in C6 cells cultured in serum-containing medium, SP cells can be generated from non-SP cells. This dynamic equilibrium explains in C6 cells the maintenance of the SP phenotype with cell passaging and demonstrates the existence of tumorigenic non-SP cells

    Persistent mRNA and miRNA expression changes in irradiated baboons

    No full text
    Abstract We examined the transcriptome/post-transcriptome for persistent gene expression changes after radiation exposure in a baboon model. Eighteen baboons were irradiated with a whole body equivalent dose of 2.5 or 5 Gy. Blood samples were taken before, 7, 28 and 75–106 days after radiation exposure. Stage I was a whole genome screening for mRNA combined with a qRT-PCR platform for detection of 667 miRNAs. Candidate mRNAs and miRNAs differentially up- or down-regulated in stage I were chosen for validation in stage II using the remaining samples. Only 12 of 32 candidate genes provided analyzable results with two mRNAs showing significant 3–5-fold differences in gene expression over the reference (p < 0.0001). From 667 candidate miRNAs, 290 miRNA were eligible for analysis with 21 miRNAs independently validated using qRT-PCR. These miRNAs showed persistent expression changes on each day and over days 7–106 days after exposure (n = 7). In particular miR-212 involved in radiosensitivity and immune modulation appeared persistently and 48–77-fold up-regulated over the entire time period. We are finally trying to put our results into a context of clinical implications and provide possible hints on underlying molecular mechanisms to be examined in future studies

    Soluble Vascular Endothelial Cadherin as a New Biomarker of Irradiation in Highly Irradiated Baboons with Bone Marrow Protection

    No full text
    International audienceVascular endothelial cadherin is the main component of adherens junctions enabling cohesion of the endothelial monolayer in vessels. The extracellular part of vascular endothelial cadherin (VE-cadherin) can be cleaved, releasing soluble fragments in blood (sVE-cadherin). In some diseases with endothelial dysfunction, a correlation between increased blood sVE-cadherin levels and disease state has been proposed. Irradiation is known to induce endothelial damage, but new serum biomarkers are needed to evaluate endothelial damage after irradiation. Here, the authors investigated whether sVE-cadherin may be an interesting biomarker of irradiation in highly irradiated baboons with bone marrow protection. sVE-cadherin was detected in the plasma of young as well as old baboons. Plasma sVE-cadherin levels significantly decrease a few days after irradiation but recover in the late time after irradiation. Kinetic analysis of plasma sVE-cadherin levels suggests a correlation with white blood cell counts in both the acute phase of irradiation and during hematopoietic recovery, suggesting that plasma sVE-cadherin levels may be partly linked to the disappearance and recovery of white blood cells. Interestingly, after hematopoietic recovery was completed, sVE-cadherin levels were found to exceed control values, suggesting that plasma sVE-cadherin may represent a new biomarker of endothelial damage or neovascularization in the late time after irradiation
    • …
    corecore