17 research outputs found

    New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts

    No full text
    We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus

    Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    No full text
    Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress

    Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system

    No full text
    UMR BGPI Equipe 2International audienceAll RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence

    Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus–insect cell system

    No full text
    All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence

    Phosphorylation of viral RNA-dependent RNA polymerase and its role in replication of a plus-strand RNA virus.

    No full text
    International audienceCentral to the process of plus-strand RNA virus genome amplification is the viral RNA-dependent RNA polymerase (RdRp). Understanding its regulation is of great importance given its essential function in viral replication and the common architecture and catalytic mechanism of polymerases. Here we show that Turnip yellow mosaic virus (TYMV) RdRp is phosphorylated, when expressed both individually and in the context of viral infection. Using a comprehensive biochemical approach, including metabolic labeling and mass spectrometry analyses, phosphorylation sites were mapped within an N-terminal PEST sequence and within the highly conserved palm subdomain of RNA polymerases. Systematic mutational analysis of the corresponding residues in a reverse genetic system demonstrated their importance for TYMV infectivity. Upon mutation of the phosphorylation sites, distinct steps of the viral cycle appeared affected, but in contrast to other plus-strand RNA viruses, the interaction between viral replication proteins was unaltered. Our results also highlighted the role of another TYMV-encoded replication protein as an antagonistic protein that may prevent the inhibitory effect of RdRp phosphorylation on viral infectivity. Based on these data, we propose that phosphorylation-dependent regulatory mechanisms are essential for viral RdRp function and virus replication

    Identification of five B-type response regulators as members of a multistep phosphorelay system interacting with histidine-containing phosphotransfer partners of <it>Populus</it> osmosensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In plants, the multistep phosphorelay signaling pathway mediates responses to environmental factors and plant hormones. This system is composed of three successive partners: hybrid Histidine-aspartate Kinases (HKs), Histidine-containing Phosphotransfer proteins (HPts), and Response Regulators (RRs). Among the third partners, B-type RR family members are the final output elements of the pathway; they act as transcription factors and clearly play a pivotal role in the early response to cytokinin in <it>Arabidopsis</it>. While interactions studies between partners belonging to the multistep phosphorelay system are mainly focused on protagonists involved in cytokinin or ethylene pathways, very few reports are available concerning partners of osmotic stress signaling pathway.</p> <p>Results</p> <p>In <it>Populus</it>, we identified eight B-type RR proteins, RR12-16, 19, 21 and 22 in the Dorskamp genotype. To assess HPt/B-type RR interactions and consequently determine potential third partners in the osmosensing multistep phosphorelay system, we performed global yeast two-hybrid (Y2H) assays in combination with Bimolecular Fluorescence Complementation (BiFC) assays in plant cells. We found that all B-type RRs are able to interact with HPt predominant partners (HPt2, 7 and 9) of HK1, which is putatively involved in the osmosensing pathway. However, different profiles of interaction are observed depending on the studied HPt. HPt/RR interactions displayed a nuclear localization, while the nuclear and cytosolic localization of HPt and nuclear localization of RR proteins were validated. Although the nuclear localization of HPt/RR interaction was expected, this work constitutes the first evidence of such an interaction in plants. Furthermore, the pertinence of this partnership is reinforced by highlighting a co-expression of B-type RR transcripts and the other partners (HK1 and HPts) belonging to a potential osmosensing pathway.</p> <p>Conclusion</p> <p>Based on the interaction studies between identified B-type RR and HPt proteins, and the co-expression analysis of transcripts of these potential partners in poplar organs, our results favor the model that RR12, 13, 14, 16 and 19 are able to interact with the main partners of HK1, HPt2, 7 and 9, and this HPt/RR interaction occurs within the nucleus. On the whole, the five B-type RRs of interest could be third protagonists putatively involved in the osmosensing signaling pathway in <it>Populus</it>.</p

    Assembly of Turnip Yellow Mosaic Virus Replication Complexes: Interaction between the Proteinase and Polymerase Domains of the Replication Proteins

    No full text
    Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus in the alphavirus-like supergroup, encodes two nonstructural replication proteins (140K and 66K), both of which are required for its RNA genome replication. The 140K protein contains domains indicative of methyltransferase, proteinase, and NTPase/helicase activities, while the 66K protein encompasses the RNA-dependent RNA polymerase domain. Recruitment of the 66K protein to the sites of viral replication, located at the periphery of chloroplasts, is dependent upon the expression of the 140K protein. Using antibodies raised against the 140K and 66K proteins and confocal microscopy, we report the colocalization of the TYMV replication proteins at the periphery of chloroplasts in transfected or infected cells. The replication proteins cofractionated in functional replication complexes or with purified chloroplast envelope membranes prepared from infected plants. Using a two-hybrid system and coimmunoprecipitation experiments, we also provide evidence for a physical interaction of the TYMV replication proteins. In contrast to what has been found for other members of the alphavirus-like supergroup, the interaction domains were mapped to the proteinase domain of the 140K protein and to a large region encompassing the core polymerase domain within the 66K protein. Coexpression and colocalization experiments confirmed that the helicase domain of the 140K protein is unnecessary for the proper recruitment of the 66K protein to the chloroplast envelope, while the proteinase domain appears to be essential for that process. These results support a novel model for the interaction of TYMV replication proteins and suggest that viruses in the alphavirus-like supergroup may have selected different pathways to assemble their replication complexes

    Searching for Osmosensing Determinants in Poplar Histidine-Aspartate Kinases

    No full text
    Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors

    Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes

    No full text
    International audienceCytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra-and inter-specific communication molecules in prokaryotic and eukaryotic organisms
    corecore