2,133 research outputs found
Thermal phase diagrams of columnar liquid crystals
In order to understand the possible sequence of transitions from the
disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene
(HHTT), we study a three-dimensional planar model with octupolar interactions
inscribed on a triangular lattice of columns. We obtain thermal phase diagrams
using a mean-field approximation and Monte Carlo simulations. These two
approaches give similar results, namely, in the quasi one-dimensional regime,
as the temperature is lowered, the columns order with a linear polarization,
whereas helical phases develop at lower temperatures. The helicity patterns of
the helical phases are determined by the exact nature of the frustration in the
system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe
FGFs: Neurodevelopment’s Jack-of-all-Trades – How Do They Do it?
From neurulation to postnatal processes, the requirements for FGF signaling in many aspects of neural precursor cell biology have been well documented. However, identifying a requirement for FGFs in a particular neurogenic process provides only an initial and superficial understanding of what FGF signaling is doing. How FGFs specify cell types in one instance, yet promote cell survival, proliferation, migration, or differentiation in other instances remains largely unknown and is key to understanding how they function. This review describes what we have learned primarily from in vivo vertebrate studies about the roles of FGF signaling in neurulation, anterior–posterior patterning of the neural plate, brain patterning from local signaling centers, and finally neocortex development as an example of continued roles for FGFs within the same brain area. The potential explanations for the diverse functions of FGFs through differential interactions with cell intrinsic and extrinsic factors is then discussed with an emphasis on how little we know about the modulation of FGF signaling in vivo. A clearer picture of the mechanisms involved is nevertheless essential to understand the behavior of neural precursor cells and to potentially guide their fates for therapeutic purposes
Supersolid phases in the one dimensional extended soft core Bosonic Hubbard model
We present results of Quantum Monte Carlo simulations for the soft core
extended bosonic Hubbard model in one dimension exhibiting the presence of
supersolid phases similar to those recently found in two dimensions. We find
that in one and two dimensions, the insulator-supersolid transition has dynamic
critical exponent z=2 whereas the first order insulator-superfluid transition
in two dimensions is replaced by a continuous transition with z=1 in one
dimension. We present evidence that this transition is in the
Kosterlitz-Thouless universality class and discuss the mechanism behind this
difference. The simultaneous presence of two types of quasi long range order
results in two soliton-like dips in the excitation spectrum.Comment: 4 pages, 5 figure
3D EDX microanalysis by FIB-SEM: Elemental quantification enhancement
Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
FIB-SEM Nanotomography in Materials and Life Science at EPFL
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201
- …