154 research outputs found

    Revisiting the prognostic role of FLT3 mutations in acute myelogenous leukemia

    Get PDF
    Introduction: Approximately one-third of patients with acute myelogenous leukemia (AML) harbor mutations in the fms-like tyrosine kinase 3 (FLT3) gene. The features regarding prognostic impact of FLT3 mutated AML have been widely investigated and debated in the last decades, and the significance of this mutation is constantly evolving. Areas covered: In this article, the significance of the FLT3 mutation and various aspects of this mutation are discussed in the light of new understanding and research progress in past years. The recently updated European Leukemia Net (ELN) guidelines are reviewed and discussed, special emphasis given to the the improvement in therapeutic approaches for FLT3 mutated AML. Expert opinion: Aspects related to FLT3 mutated AML include the type of mutation in addition to FLT3-internal tandem duplication (ITD) length, location, and allelic ratio. Furthermore, the coexistence of cytogenetic variants and molecular genetic mutations utterly complicate the evaluation of the prognostic impact. In addition, introduction of FLT3 inhibitors and establishment of measurable residual disease (MRD) monitoring have entered the treatment and evaluation armamentarium in the handling of AML patients, resulting in improved prognosis for these patients. However, future research to optimize the treatment of FLT3 mutated AML is highly desired.publishedVersio

    A subset of patients with acute myeloid leukemia has leukemia cells characterized by chemokine responsiveness and altered expression of transcriptional as well as angiogenic regulators

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive and heterogeneous bone marrow malignancy, the only curative treatment being intensive chemotherapy eventually in combination with allogeneic stem cell transplantation. Both the AML and their neighboring stromal cells show constitutive chemokine release, but chemokines seem to function as regulators of AML cell proliferation only for a subset of patients. Chemokine targeting is therefore considered not only for immunosuppression in allotransplanted patients but also as a possible antileukemic strategy in combination with intensive chemotherapy or as part of disease-stabilizing treatment at least for the subset of patients with chemokine-responsive AML cells. In this study, we characterized more in detail the leukemia cell phenotype of the chemokine-responsive patients. We investigated primary AML cells derived from 79 unselected patients. Standardized in vitro suspension cultures were used to investigate AML cell proliferation, and global gene expression profiles were compared for chemokine responders and non-responders identified through the proliferation assays. CCL28-induced growth modulation was used as marker of chemokine responsiveness, and 38 patients were then classified as chemokine-responsive. The effects of exogenous CCL28 (growth inhibition/enhancement/no effect) thus differed among patients and was also dependent on the presence of exogenous hematopoietic growth factors as well as constitutive AML cell cytokine release. The effect of CCR1 inhibition in the presence of chemokine-secreting mesenchymal stem cells also differed among patients. Chemokine-responsive AML cells showed altered expression of genes important for (i) epigenetic transcriptional regulation, particularly lysine acetylation; (ii) helicase activity, especially DExD/H RNA helicases; and (iii) angioregulatory proteins important for integrin binding. Thus, chemokine responsiveness is part of a complex AML cell phenotype with regard to extracellular communication and transcriptional regulation. Chemokine targeting in chemokine-responsive patients may thereby alter AML cell trafficking and increase their susceptibility toward antileukemic treatment, e.g., conventional chemotherapy or targeting of other phenotypic characteristics of the chemokine-responsive cells.publishedVersio

    Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia

    Get PDF
    Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.publishedVersio

    Tuberculosis-Associated Hemophagocytic Lymphohistiocytosis: A Review of Current Literature

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a condition of immune dysregulation and hyperinflammation, leading to organ failure and death. Malignancy, autoimmune conditions, and infections, including Mycobacterium tuberculosis (TB), are all considered triggers of HLH. The aim of this study was to review all reported cases of TB-associated HLH in English literature, and to summarize the epidemiology, diagnostics, treatment, and mortality in patients with concomitant HLH and TB. A systematic review of described cases with TB-associated HLH, via a structured literature search in the medical database PubMed, is presented. Additional articles were included through cross-referencing with existing review articles. Articles were reviewed based on a predetermined set of criteria. A total of 116 patients with TB-associated HLH were identified with a male:female ratio of about 3:2. The age at presentation ranged from 12 days to 83 years. Malignancy, autoimmunity, and renal failure were the most common comorbid conditions. Most patients received both tuberculostatic and specific immunomodulating treatment, which was associated with a 66% (48/73) survival rate compared to 56% (15/27) in those receiving only tuberculostatic treatment, and 0% (0/13) in those receiving only immunomodulating treatment. The survival rate was 55% overall. The overlapping presentation between disseminated TB and HLH poses challenging diagnostics and may delay diagnosis and treatment, leading to increased mortality. TB should be considered as a potential trigger of HLH; clinicians’ knowledge and awareness of this may result in the appropriate investigations needed to ensure diagnosis and proper treatment.publishedVersio

    Platelets for advanced drug delivery in cancer

    Get PDF
    Introduction: Cancer-related drug expenses are rising with the increasing cancer incidence and cost may represent a severe challenge for drug access for patients with cancer. Consequently, strategies for increasing therapeutic efficacy of already available drugs may be essential for the future health-care system. Areas covered: In this review, we have investigated the potential for the use of platelets as drug-delivery systems. We searched PubMed and Google Scholar to identify relevant papers written in English and published up to January 2023. Papers were included at the authors’ discretion to reflect an overview of state of the art. Expert opinion: It is known that cancer cells interact with platelets to gain functional advantages including immune evasion and metastasis development. This platelet-cancer interaction has been the inspiration for numerous platelet-based drug delivery systems using either drug-loaded or drug-bound platelets, or platelet membrane-containing hybrid vesicles combining platelet membranes with synthetic nanocarriers. Compared to treatment with free drug or synthetic drug vectors, these strategies may improve pharmacokinetics and selective cancer cell targeting. There are multiple studies showing improved therapeutic efficacy using animal models, however, no platelet-based drug delivery systems have been tested in humans, meaning the clinical relevance of this technology remains uncertain.publishedVersio

    Pretransplant Systemic Lipidomic Profiles in Allogeneic Stem Cell Transplant Recipients

    Get PDF
    Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.publishedVersio

    Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.publishedVersio

    Hematopoiesis, Inflammation and Aging—The Biological Background and Clinical Impact of Anemia and Increased C‐Reactive Protein Levels on Elderly Individuals

    Get PDF
    Anemia and systemic signs of inflammation are common in elderly individuals and are associated with decreased survival. The common biological context for these two states is then the hallmarks of aging, i.e., genomic instability, telomere shortening, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Such aging-associated alterations of hematopoietic stem cells are probably caused by complex mechanisms and depend on both the aging of hematopoietic (stem) cells and on the supporting stromal cells. The function of inflammatory or immunocompetent cells is also altered by aging. The intracellular signaling initiated by soluble proinflammatory mediators (e.g., IL1, IL6 and TNFα) is altered during aging and contributes to the development of both the inhibition of erythropoiesis with anemia as well as to the development of the acute-phase reaction as a systemic sign of inflammation with increased CRP levels. Both anemia and increased CRP levels are associated with decreased overall survival and increased cardiovascular mortality. The handling of elderly patients with inflammation and/or anemia should in our opinion be individualized; all of them should have a limited evaluation with regard to the cause of the abnormalities, but the extent of additional and especially invasive diagnostic evaluation should be based on an overall clinical evaluation and the possible therapeutic consequences.publishedVersio

    Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    Get PDF
    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects

    Hyperferritinemia—a clinical overview

    Get PDF
    Ferritin is one of the most frequently requested laboratory tests in primary and secondary care, and levels often deviate from reference ranges. Serving as an indirect marker for total body iron stores, low ferritin is highly specific for iron deficiency. Hyperferritinemia is, however, a non-specific finding, which is frequently overlooked in general practice. In routine medical practice, only 10% of cases are related to an iron overload, whilst the rest is seen as a result of acute phase reactions and reactive increases in ferritin due to underlying conditions. Differentiation of the presence or absence of an associated iron overload upon hyperferritinemia is essential, although often proves to be complex. In this review, we have performed a review of a selection of the literature based on the authors’ own experiences and assessments in accordance with international recommendations and guidelines. We address the biology, etiology, and epidemiology of hyperferritinemia. Finally, an algorithm for the diagnostic workup and management of hyperferritinemia is proposed, and general principles regarding the treatment of iron overload are discussed.publishedVersio
    corecore