487 research outputs found
Trapped-Atom-Interferometer in a Magnetic Microtrap
We propose a configuration of a magnetic microtrap which can be used as an
interferometer for three-dimensionally trapped atoms. The interferometer is
realized via a dynamic splitting potential that transforms from a single well
into two separate wells and back. The ports of the interferometer are
neighboring vibrational states in the single well potential. We present a
one-dimensional model of this interferometer and compute the probability of
unwanted vibrational excitations for a realistic magnetic potential. We
optimize the speed of the splitting process in order suppress these excitations
and conclude that such interferometer device should be feasible with currently
available microtrap technique.Comment: 6 pages, 6 figures, submitted to PR
Process tomography of ion trap quantum gates
A crucial building block for quantum information processing with trapped ions
is a controlled-NOT quantum gate. In this paper, two different sequences of
laser pulses implementing such a gate operation are analyzed using quantum
process tomography. Fidelities of up to 92.6(6)% are achieved for single gate
operations and up to 83.4(8)% for two concatenated gate operations. By process
tomography we assess the performance of the gates for different experimental
realizations and demonstrate the advantage of amplitude--shaped laser pulses
over simple square pulses. We also investigate whether the performance of
concatenated gates can be inferred from the analysis of the single gates
Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap
In the endeavour to scale up the number of qubits in an ion-based quantum
computer several groups have started to develop miniaturized ion traps for
extended spatial control and manipulation of the ions. Shuttling and separation
of ion strings have been the foremost issues in linear-trap arrangements and
some prototypes of junctions have been demonstrated for the extension of ion
motion to two dimensions (2D). While junctions require complex trap structures,
small extensions to the 1D motion can be accomplished in simple linear trap
arrangements. Here, control of the extended field in a planar, linear chip trap
is used to shuttle ions in 2D. With this approach, the order of ions in a
string is deterministically reversed. Optimized potentials are theoretically
derived and simulations show that the reordering can be carried out
adiabatically. The control over individual ion positions in a linear trap
presents a new tool for ion-trap quantum computing. The method is also expected
to work with mixed crystals of different ion species and as such could have
applications for sympathetic cooling of an ion string.Comment: 18 pages, 9 figures. Added section on possibility of adiabatic turn.
Added appendix on point charge model. Other minor alterations/clarifications.
Version now published (http://www.iop.org/EJ/abstract/1367-2630/11/10/103008
Breakdown of superfluidity of an atom laser past an obstacle
The 1D flow of a continuous beam of Bose-Einstein condensed atoms in the
presence of an obstacle is studied as a function of the beam velocity and of
the type of perturbing potential (representing the interaction of the obstacle
with the atoms of the beam). We identify the relevant regimes:
stationary/time-dependent and superfluid/dissipative; the absence of drag is
used as a criterion for superfluidity. There exists a critical velocity below
which the flow is superfluid. For attractive obstacles, we show that this
critical velocity can reach the value predicted by Landau's approach. For
penetrable obstacles, it is shown that superfluidity is recovered at large beam
velocity. Finally, enormous differences in drag occur when switching from
repulsive to attractive potential.Comment: 15 pages, 6 figure
Neurovascular disease in Switzerland: 10-year trends show non-traditional risk factors on the rise and higher exposure in women
BACKGROUND AND PURPOSE
Effective risk factor modification is the prerequisite to prevent neurovascular disease such as stroke or vascular dementia. Non-traditional vascular risk factors (nt-vrfs) including stress significantly add to the risk of neurovascular disease arising from traditional vascular risk factors (t-vrfs). In order to discover sex-specific changes that may underlie previously reported inclines in the prevalence of neurovascular and cardiovascular disease in women, 10-year trends in the prevalence of vrfs in Switzerland were assessed.
METHODS
Anonymized data from 22,134 participants (51% women) of the governmental Swiss Health Survey, performed every 5 years (2007, 2012 and 2017), were obtained. Epidemiological parameters, t-vrfs and nt-vrfs were analyzed in a cross-sectional study design.
RESULTS
Over the observation period, the number of women having full-time jobs increased considerably (2007 38%, 2012 39%, 2017 44%). This was accompanied by a substantial rise in the prevalence of nt-vrfs in women and men including stress at work (2007, not available; 2012 women/men 58%/60%; 2017 women/men 66%/65%), low locus of control (women/men: 2007 21%/19%, 2012 22%/19%, 2017 25%/22%) and sleep disorders (women/men: 2007 30%/22%, 2012 28%/20%, 2017 32%/26%). Amongst t-vrfs, only the prevalence of obesity and hypercholesterolemia increased over time in both sexes, whilst other t-vrfs remained stable (hypertension [27%], diabetes [5%]) or decreased (smoking [9.4 cigarettes/day]).
CONCLUSIONS
A rise in women's economic participation alongside a higher affection with nt-vrfs in the female Swiss population emphasizes the need to improve vascular risk stratification and implement effective preventive measures for neurovascular and cardiovascular disease
Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential
We investigate the possibility to trap ultracold atoms near the outside of a
metallic carbon nanotube (CN) which we imagine to use as a miniaturized
current-carrying wire. We calculate atomic spin flip lifetimes and compare the
strength of the Casimir-Polder potential with the magnetic trapping potential.
Our analysis indicates that the Casimir-Polder force is the dominant loss
mechanism and we compute the minimum distance to the carbon nanotube at which
an atom can be trapped.Comment: 8 pages, 3 figure
Dynamics of Macroscopic Wave Packet Passing through Double Slits: Role of Gravity and Nonlinearity
Using the nonlinear Schroedinger equation (Gross-Pitaevskii equation), the
dynamics of a macroscopic wave packet for Bose-Einstein condensates falling
through double slits is analyzed. This problem is identified with a search for
the fate of a soliton showing a head-on collision with a hard-walled obstacle
of finite size. We explore the splitting of the wave packet and its
reorganization to form an interference pattern. Particular attention is paid to
the role of gravity (g) and repulsive nonlinearity (u_0) in the fringe pattern.
The peak-to-peak distance in the fringe pattern and the number of interference
peaks are found to be proportional to g^(-1/2) and u_0^(1/2)g^(1/4),
respectively. We suggest a way of designing an experiment under controlled
gravity and nonlinearity.Comment: 10 pages, 4 figures and 1 tabl
Caries risk assessment in school children using a reduced Cariogram model without saliva tests
<p>Abstract</p> <p>Background</p> <p>To investigate the caries predictive ability of a reduced Cariogram model without salivary tests in schoolchildren.</p> <p>Methods</p> <p>The study group consisted of 392 school children, 10-11 years of age, who volunteered after informed consent. A caries risk assessment was made at baseline with aid of the computer-based Cariogram model and expressed as "the chance of avoiding caries" and the children were divided into five risk groups. The caries increment (ΔDMFS) was extracted from the dental records and bitewing radiographs after 2 years. The reduced Cariogram was processed by omitting the variables "salivary mutans streptococci", "secretion rate" and "buffer capacity" one by one and finally all three. Differences between the total and reduced models were expressed as area under the ROC-curve.</p> <p>Results</p> <p>The baseline caries prevalence in the study population was 40% (mean DMFS 0.87 ± 1.35) and the mean 2-year caries increment was 0.51 ± 1.06. Both Cariogram models displayed a statistically relationship with caries development (p < 0.05); more caries was found among those assessed with high risk compared to those with low risk. The combined sensitivity and specificity decreased after exclusion of the salivary tests and a statistically significant reduction of the area under the ROC-curve was displayed compared with the total Cariogram (p < 0.05). Among the salivary variables, omission of the mutans streptococci enumeration impaired the predictive ability the most.</p> <p>Conclusions</p> <p>The accuracy of caries prediction in school children was significantly impaired when the Cariogram model was applied without enumeration of salivary tests.</p
Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization
We present designs for Ioffe-Pritchard type magnetic traps using planar
patterns of hard magnetic material. Two samples with different pattern designs
were produced by spark erosion of 40 m thick FePt foil. The pattern on the
first sample yields calculated axial and radial trap frequencies of 51 Hz and
6.8 kHz, respectively. For the second sample the calculated frequencies are 34
Hz and 11 kHz. The structures were used successfully as a magneto-optical trap
for Rb and loaded as a magnetic trap. A third design, based on
lithographically patterned 250 nm thick FePt film on a Si substrate, yields an
array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz
and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture
Trapped-ion probing of light-induced charging effects on dielectrics
We use a string of confined Ca ions to measure perturbations to a
trapping potential which are caused by light-induced charging of an
anti-reflection coated window and of insulating patches on the ion-trap
electrodes. The electric fields induced at the ions' position are characterised
as a function of distance to the dielectric, and as a function of the incident
optical power and wavelength. The measurement of the ion-string position is
sensitive to as few as elementary charges per on the
dielectric at distances of order millimetres, and perturbations are observed
for illumination with light of wavelengths as long as 729\,nm. This has
important implications for the future of miniaturised ion-trap experiments,
notably with regards to the choice of electrode material, and the optics that
must be integrated in the vicinity of the ion. The method presented can be
readily applied to the investigation of charging effects beyond the context of
ion trap experiments.Comment: 11 pages, 5 figure
- …