9 research outputs found

    Status and challenges for molecular solar thermal energy storage system based devices

    Get PDF
    Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications

    Scalable Synthesis of Norbornadienes via in situ Cracking of Dicyclopentadiene Using Continuous Flow Chemistry

    Get PDF
    The norbornadiene (NBD)-quadricyclane (QC) photoswitch has recently attracted attention due to its use in molecular solar thermal energy systems (MOST). Normally for device testing, several grams are needed. One way of synthesizing NBDs efficiently is through the Diels-Alder reaction between alkynes and cyclopentadiene. However, scaling up the reaction can be troublesome in a research lab environment. Also, dicyclopentadiene needs cracking before utilization which is a time-consuming step. Here, we developed a method where we both scale up the synthesis in a single reaction step that involves both in situ cracking of dicyclopentadiene and the direct reaction of cyclopentadiene with acetylene derivatives using a tubular coiled stainless steel flow reactor. As a proof-of-concept, we synthesized six different NBD compounds and scaled the synthesis to produce 87 g of a novel NBD in 9 h. The NBD is further characterized, showing promising properties for MOST applications. Our new method shows that flow chemistry is an attractive technique for the fast and efficient synthesis of large quantities of NBDs, needed to develop future real-life devices and applications

    Searching the Chemical Space of Bicyclic Dienes for Molecular Solar Thermal Energy Storage Candidates

    Get PDF
    Photoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods. We further device an efficient strategy for scoring the systems based on their predicted solar energy conversion efficiency and elucidate potential pitfalls of this approach. Our search through the chemical space of bicyclic dienes reveals systems with unprecedented solar energy conversion efficiencies and storage densities that show promising design guidelines for next generation molecular solar thermal energy storage systems

    Searches for bridged bicyclic molecules in space-norbornadiene and its cyano derivatives

    Get PDF
    The norbornadiene (NBD) molecule, C7H8, owes its fame to its remarkable photoswitching properties that are promising for molecular solar-thermal energy storage systems. Besides this photochemical interest, NBD is a rather unreactive species within astrophysical conditions and it should exhibit high photostability, properties that might also position this molecule as an important constituent of the interstellar medium (ISM)-especially in environments that are well shielded from short-wavelength radiation, such as dense molecular clouds. It is thus conceivable that, once formed, NBD can survive in dense molecular clouds and act as a carbon sink. Following the recent interstellar detections of large hydrocarbons, including several cyano-containing ones, in the dense molecular cloud TMC-1, it is thus logical to consider searching for NBD-which presents a shallow but non-zero permanent electric dipole moment (0.06 D)-as well as for its mono- and dicyano-substituted compounds, referred to as CN-NBD and DCN-NBD, respectively. The pure rotational spectra of NBD, CN-NBD, and DCN-NBD have been measured at 300 K in the 75-110 GHz range using a chirped-pulse Fourier-transform millimetre-wave spectrometer. Of the three species, only NBD was previously studied at high resolution in the microwave domain. From the present measurements, the derived spectroscopic constants enable prediction of the spectra of all three species at various rotational temperatures (up to 300 K) in the spectral range mapped at high resolution by current radio observatories. Unsuccessful searches for these molecules were conducted toward TMC-1 using the QUIJOTE survey, carried out at the Yebes telescope, allowing derivation of the upper limits to the column densities of 1.6 x 10(14) cm(-2), 4.9 x 10(10) cm(-2), and 2.9 x 10(10) cm(-2) for NBD, CN-NBD, and DCN-NBD, respectively. Using CN-NBD and cyano-indene as proxies for the corresponding bare hydrocarbons, this indicates that-if present in TMC-1-NBD would be at least four times less abundant than indene

    Thermo-optical performance of molecular solar thermal energy storage films

    Get PDF
    Due to their potential for solar energy harvesting and storage, molecular solar thermal energy storage (MOST) materials are receiving wide attention from both the research community and the public. MOST materials absorb photons and convert their energy to chemical energy, which is contained within the bonds of the MOST molecules. Depending on the molecular structure, these materials can store up to 1 MJ/kg, at ambient temperature and with storage times ranging from minutes to several years. This work is the first to thoroughly investigate the potential of MOST materials for the development of energy saving windows. To this end, the MOST molecules are integrated into thin, optically transparent films, which store solar energy during the daytime and release heat at a later point in time. A combined experimental and modeling approach is used to verify the system\u27s basic functionality and identify key parameters. Multi-physics modeling and simulation were conducted to evaluate the interaction of MOST films with light, both monochromatic and the entire solar spectrum, as well as the corresponding dynamic energy storage. The model was experimentally verified by studying the optical response of thin MOST films containing norbornadiene derivatives as a functional system. We found that the MOST films act as excellent UV shield and can store up to 0.37 kWh/m2 for optimized MOST molecules. Further, this model allowed us to screen various material parameters and develop guidelines on how to optimize the performance of MOST window films

    Probing Charge Management across the π-Systems of Nanographenes in Regioisomeric Electron Donor-Acceptor Architectures

    No full text
    Inspired by light-induced processes in nature to mimic the primary events in the photosynthetic reaction centers, novel functional materials combine electron donors and acceptors, i.e., (metallo)porphyrins (ZnP) and fullerenes (C60), respectively, with emerging materials, i.e., nanographenes. We utilized hexa-peri-hexabenzocoronene (HBC) due to its versatility regarding functionalization and physicochemical properties, to construct three regioisomeric ZnP-HBC-C60 conjugates, which foster geometrical diversity by arranging ZnP and C60 in ortho-, meta-, and para-positions to each other. The corresponding hexaarylbenzene (HAB) motifs, with an interrupted π-system, were also prepared. Transient absorption measurements disclosed the fast population of charge transfer as well as singlet and triplet charge-separated states. With the help of density functional theory (DFT) calculations, we further conceive the communication across the HBCs and HABs. This work reveals the impact of both the geometrical arrangement with respect to through-space versus through-bond interactions and the structural rigidity/flexibility on the charge management across the different π-systems

    A Singular Molecule-to-Molecule Transformation on Video: The Bottom-Up Synthesis of Fullerene C-60 from Truxene Derivative C60H30

    No full text
    Singular reaction events of small molecules and their dynamics remain a hardly understood territory in chemical sciences since spectroscopy relies on ensemble-averaged data, and microscopic scanning probe techniques show snapshots of frozen scenes. Herein, we report on continuous high-resolution transmission electron microscopic video imaging of the electron-beam-induced bottom-up synthesis of fullerene C-60 through cyclodehydrogenation of tailor-made truxene derivative 1 (C60H30), which was deposited on graphene as substrate. During the reaction, C60H30 transformed in a multistep process to fullerene C-60. Hereby, the precursor, metastable intermediates, and the product were identified by correlations with electron dose-corrected molecular simulations and single-molecule statistical analysis, which were substantiated with extensive density functional theory calculations. Our observations revealed that the initial cyclodehydrogenation pathway leads to thermodynamically favored intermediates through seemingly classical organic reaction mechanisms. However, dynamic interactions of the intermediates with the substrate render graphene as a non-innocent participant in the dehydrogenation process, which leads to a deviation from the classical reaction pathway. Our precise visual comprehension of the dynamic transformation implies that the outcome of electron-beam-initiated reactions can be controlled with careful molecular precursor design, which is important for the development and design of materials by electron beam lithography

    Tunable Energy Release in a Reversible Molecular Solar Thermal System br

    No full text
    Molecular solar thermal (MOST) systems open application fields for solar energy conversion as they combine conversion, storage, and release in one single molecule. For energy release, catalysts must be controllable, selective, and stable over many operation cycles. Here, we present a MOST/catalyst couple, which combines all these properties. We explore solar energy storage in a tailor-made MOST system (cyano-3-(3,4-dimethoxyphenyl)-norbornadiene/quadricyclane; NBD \u27/QC \u27) and the energy release heterogeneously catalyzed at a Au(111) surface. By photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and scanning tunneling microscopy, we show that Au triggers the energy release with very high activity. Most remarkably, the release rate of the heterogeneously catalyzed process can be tuned by applying an external potential. Our durability tests show that the MOST/catalyst system is stable over 1000 storage cycles without any decomposition. The surface structure of the catalyst is preserved, and its activity decreases by only 0.1% per storage cycle

    Tunable Energy Release in a Reversible Molecular Solar Thermal System

    No full text
    Molecular solar thermal (MOST) systems open application fields for solar energy conversion as they combine conversion, storage, and release in one single molecule. For energy release, catalysts must be controllable, selective, and stable over many operation cycles. Here, we present a MOST/catalyst couple, which combines all these properties. We explore solar energy storage in a tailor-made MOST system (cyano-3-(3,4-dimethoxyphenyl)-norbornadiene/quadricyclane; NBD′/QC′) and the energy release heterogeneously catalyzed at a Au(111) surface. By photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and scanning tunneling microscopy, we show that Au triggers the energy release with very high activity. Most remarkably, the release rate of the heterogeneously catalyzed process can be tuned by applying an external potential. Our durability tests show that the MOST/catalyst system is stable over 1000 storage cycles without any decomposition. The surface structure of the catalyst is preserved, and its activity decreases by only 0.1% per storage cycle
    corecore