4,235 research outputs found

    Distribution of equilibrium free energies in a thermodynamic system with broken ergodicity

    Full text link
    At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N1023N\sim 10^{23} interacting particles may split into an exponential number Ωsexp(const×N)\Omega_s \sim \exp({\rm const} \times N) of ergodic sub-spaces (thermodynamic states). Previous theoretical studies assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponential decay. Here we show that these assumptions are not necessarily valid. For some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by {\em excited} thermodynamic states. This work will help improving our understanding of the equilibrium statistical mechanics of spin-glasses and other complex systems.Comment: 7 pages, 2 figure

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    A balancing act: Evidence for a strong subdominant d-wave pairing channel in Ba0.6K0.4Fe2As2{\rm Ba_{0.6}K_{0.4}Fe_2As_2}

    Full text link
    We present an analysis of the Raman spectra of optimally doped Ba0.6K0.4Fe2As2{\rm Ba_{0.6}K_{0.4}Fe_2As_2} based on LDA band structure calculations and the subsequent estimation of effective Raman vertices. Experimentally a narrow, emergent mode appears in the B1gB_{1g} (dx2y2d_{x^2-y^2}) Raman spectra only below TcT_c, well into the superconducting state and at an energy below twice the energy gap on the electron Fermi surface sheets. The Raman spectra can be reproduced quantitatively with estimates for the magnitude and momentum space structure of the s+_{+-} pairing gap on different Fermi surface sheets, as well as the identification of the emergent sharp feature as a Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a subdominant dx2y2d_{x^2-y^2} channel. The binding energy of the exciton relative to the gap edge shows that the coupling strength in this subdominant dx2y2d_{x^2-y^2} channel is as strong as 60% of that in the dominant s+s_{+-} channel. This result suggests that dx2y2d_{x^2-y^2} may be the dominant pairing symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure

    Two body non-leptonic Λb\Lambda_b decays in quark model with factorization ansatz

    Full text link
    The two body non-leptonic Λb\Lambda_b decays are analyzed in factorization approximation, using quark model, ξ=1/Nc\xi = 1 / N_c as a free parameter. It is shown that the experimental branching ratio for ΛbΛJ/ψ\Lambda_b \longrightarrow \Lambda {J/\psi} restricts ξ\xi and this ratio can be understood for a value of ξ\xi which lies in the range 0ξ0.5 0 \leq \xi \leq 0.5 suggested by two body B meson decays. The branching ratios for ΛbΛcDs(Ds)\Lambda_b \longrightarrow \Lambda_{c} D^*_s(D_s) are predicted to be larger than the previous estimates. Finally it is pointed that CKM-Wolfenstein parameter ρ2+η2\rho^2 + \eta^2, where η\eta is CP phase, can be determined from the ratio of widths of ΛbΛDˉ\Lambda_b \longrightarrow \Lambda \bar{D} and ΛbΛJ/ψ\Lambda_b \longrightarrow \Lambda {J/\psi} or that of ΛbpDs\Lambda_b \longrightarrow p D_s and ΛbΛcDs\Lambda_b \longrightarrow \Lambda_c D_s independent of the parameter ξ\xi.Comment: 18 pages, latex, 1 figure available on request, please send any questions or comments to [email protected]

    Impact of Online Renting on Software Piracy

    Get PDF
    Online rental of software is emerging as a new way of dissemination for several major software firms. Compared to outright selling, the renting scheme delivers the software as a service instead of a physical good. Hence, users cannot privately make copies for resale in the market. We investigate the impact of the renting mechanism on software piracy and pricing in a two-period model whereby a piracy market is present in the second period. We develop and compare models with or without renting. Our analysis shows that renting reduces social welfare but helps to increase a vendor’s profit under certain conditions. We also assess the difference in outcomes in the presence of network effect

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target
    corecore