1,958 research outputs found

    An experiment on the shifts of reflected C-lines

    Full text link
    An experiment is described that tests theoretical predictions on how C-lines incident obliquely on a surface behave on reflection. C-lines in a polarised wave are the analogues of the optical vortices carried by a complex scalar wave, which is the usual model for describing light and other electromagnetic waves. The centre of a laser beam that carries a (degenerate) C-line is shifted on reflection by the well-known Goos-H\"anchen and Imbert-Fedorov effects, but the C-line itself splits into two, both of which are shifted longitudinally and laterally; their shifts are different from that of the beam centre. To maximise the effect to be measured, internal reflection in a glass prism close to the critical angle was used. In a simple situation like this two recently published independent theories of C-line reflection overlap and it is shown that their predictions are identical. The measured differences in the lateral shifts of the two reflected C-lines are compared with theoretical expectations over a range of incidence angles.Comment: 9 pages, 2 figure

    Polarization of tightly focused laser beams

    Full text link
    The polarization properties of monochromatic light beams are studied. In contrast to the idealization of an electromagnetic plane wave, finite beams which are everywhere linearly polarized in the same direction do not exist. Neither do beams which are everywhere circularly polarized in a fixed plane. It is also shown that transversely finite beams cannot be purely transverse in both their electric and magnetic vectors, and that their electromagnetic energy travels at less than c. The electric and magnetic fields in an electromagnetic beam have different polarization properties in general, but there exists a class of steady beams in which the electric and magnetic polarizations are the same (and in which energy density and energy flux are independent of time). Examples are given of exactly and approximately linearly polarized beams, and of approximately circularly polarized beams.Comment: 9 pages, 6 figure

    The modalities of Iranian soft power: from cultural diplomacy to soft war

    No full text
    Through exploring Iran's public diplomacy at the international level, this article demonstrates how the Islamic Republic's motives should not only be contextualised within the oft-sensationalised, material or ‘hard’ aspects of its foreign policy, but also within the desire to project its cultural reach through ‘softer’ means. Iran's utilisation of culturally defined foreign policy objectives and actions demonstrates its understanding of soft power's potentialities. This article explores the ways in which Iran's public diplomacy is used to promote its soft power and craft its, at times, shifting image on the world stage

    Abrupt grain boundary melting in ice

    Full text link
    The effect of impurities on the grain boundary melting of ice is investigated through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we include retarded potential effects in a calculation of the full frequency dependent van der Waals and Coulombic interactions within a grain boundary. At high dopant concentrations the classical solutal effect dominates the melting behavior. However, depending on the amount of impurity and the surface charge density, as temperature decreases, the attractive tail of the dispersion force interaction begins to compete effectively with the repulsive screened Coulomb interaction. This leads to a film-thickness/temperature curve that changes depending on the relative strengths of these interactions and exhibits a decrease in the film thickness with increasing impurity level. More striking is the fact that at very large film thicknesses, the repulsive Coulomb interaction can be effectively screened leading to an abrupt reduction to zero film thickness.Comment: 8 pages, 1 figur

    A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer for the Determination of Crystallographic and Electronic Symmetries

    Get PDF
    Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the micron length scale, a need for sensitivity to the entire nonlinear optical susceptibility tensor, oblique light incidence reflection geometry and incident light frequency tunability among others. These measurements are further complicated by the need for extreme sample environments such as ultra low temperatures, high magnetic fields or high pressures. In this review we present a novel experimental construction using a rotating light scattering plane that meets all the aforementioned requirements. We demonstrate the efficacy of our scheme by making symmetry measurements on a micron scale facet of a small bulk single crystal of Sr2_2IrO4_4 using optical second and third harmonic generation.Comment: 8 pages, 5 figure

    Elastic constants of beta-eucryptite: A density functional theory study

    Full text link
    The five independent elastic constants of hexagonal β\beta-eucryptite have been determined using density functional theory (DFT) total energy calculations. The calculated values agree well, to within 15%, with the experimental data. Using the calculated elastic constants, the linear compressibility of β\beta-eucryptite parallel to the c-axis, χc\chi_c, and perpendicular to it, χa\chi_a, have been evaluated. These values are in close agreement to those obtained from experimentally known elastic constants, but are in contradiction to the direct measurements based on a three-terminal technique. The calculated compressibility parallel to the c-axis was found to positive as opposed to the negative value obtained by direct measurements. We have demonstrated that χc\chi_c must be positive and discussed the implications of a positive χc\chi_c in the context of explaining the negative bulk thermal expansion of β\beta-eucryptite.Comment: 3 eps figures, submitted for publicatio

    Observations of the 8 December 1987 occultation of AG+40 deg 0783 by 324 Bamberga

    Get PDF
    The occultation of AG+40 deg 0783 by 324 Bamberga on 8 December 1987 was observed at 13 sites in the United States, Japan, and China. At four sites the event was observed photoelectrically; the other observations were visual. A least-squares fit of a circular limb profile to the data gives a diameter of 227.6 + or - 1.9 km. However, this solution is inconsistent with a negative visual observation near the northern edge of the ground track. The inconsistency cannot be removed by assuming an elliptical profile. The data suggest that Bamberga, despite its low-amplitude lightcurve, may depart significantly from a spherical or ellipsoidal shape. The asteroid also appears to be at least 10 percent smaller than indicated by infrared radiometry

    Trends in the elastic response of binary early transition metal nitrides

    Full text link
    Motivated by an increasing demand for coherent data that can be used for selecting materials with properties tailored for specific application requirements, we studied elastic response of nine binary early transition metal nitrides (ScN, TiN, VN, YN, ZrN, NbN, LaN, HfN, and TaN) and AlN. In particular, single crystal elastic constants, Young's modulus in different crystallographic directions, polycrystalline values of shear and Young's moduli, and the elastic anisotropy factor were calculated. Additionally, we provide estimates of the third order elastic constants for the ten binary nitrides.Comment: 10 pages, 7 figure

    Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies

    Full text link
    The binding energies of 29Si, 33S, and 36Cl have been measured with a relative uncertainty <0.59×106< 0.59 \times 10^{-6} using a flat-crystal spectrometer. The unique features of these measurements are 1) nearly perfect crystals whose lattice spacing is known in meters, 2) a highly precise angle scale that is derived from first principles, and 3) a gamma-ray measurement facility that is coupled to a high flux reactor with near-core source capability. The binding energy is obtained by measuring all gamma-rays in a cascade scheme connecting the capture and ground states. The measurements require the extension of precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region, a significant precision measurement challenge. The binding energies determined from these gamma-ray measurements are consistent with recent highly accurate atomic mass measurements within a relative uncertainty of 4.3×1074.3 \times 10^{-7}. The gamma-ray measurement uncertainties are the dominant contributors to the uncertainty of this consistency test. The measured gamma-ray energies are in agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure

    Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms

    Full text link
    Electrochemical insertion-deintercalation reactions are typically associated with significant change of molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10 nanometer level using electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J. Appl. Phys
    corecore