10,431 research outputs found

    Linear semigroups with coarsely dense orbits

    Full text link
    Let SS be a finitely generated abelian semigroup of invertible linear operators on a finite dimensional real or complex vector space VV. We show that every coarsely dense orbit of SS is actually dense in VV. More generally, if the orbit contains a coarsely dense subset of some open cone CC in VV then the closure of the orbit contains the closure of CC. In the complex case the orbit is then actually dense in VV. For the real case we give precise information about the possible cases for the closure of the orbit.Comment: We added comments and remarks at various places. 14 page

    Enhanced Peculiar Velocities in Brane-Induced Gravity

    Get PDF
    The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the LCDM paradigm. The recent estimates of the large scale bulk flow by Watkins et al. are inconsistent at the nearly 3 sigma level with LCDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the Bullet Cluster (1E0657-57) is unlikely at a 6.5-5.8 sigma level, with an estimated probability between 3.3x10^{-11} and 3.6x10^{-9} in LCDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultra large distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2 sigma level with bulk flow observations. The occurrence of the Bullet Cluster in these theories is 10^4 times more probable than in LCDM cosmology.Comment: 15 pages, 6 figures. v2: added reference

    Charge-exchange limits on low-energy α-particle fluxes in solar flares

    Get PDF
    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Lyα line of He II at 304 Å, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary α particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon<sup>–1</sup>. We study 10 events in total, including the γ-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism

    Dynamical Mass Generation of Composite Dirac Fermions and Fractional Quantum Hall Effects near Charge Neutrality in Graphene

    Full text link
    We develop a composite Dirac fermion theory for the fractional quantum Hall effects (QHE) near charge neutrality in graphene. We show that the interactions between the composite Dirac fermions lead to dynamical mass generation through exciton condensation. The four-fold spin-valley degeneracy is fully lifted due to the mass generation and the exchange effects such that the odd-denominator fractional QHE observed in the vicinity of charge neutrality can be understood in terms of the integer QHE of the composite Dirac fermions. At the filling factor ν=1/2\nu=1/2, we show that the massive composite Dirac fermion liquid is unstable against chiral p-wave pairing for weak Coulomb interactions and the ground state is a paired nonabelian state described by the Moore-Read Pfaffian in the long wavelength limit.Comment: Extended, published version, 9 pages, 3 figure

    Strategyproof Mechanisms for Additively Separable Hedonic Games and Fractional Hedonic Games

    Full text link
    Additively separable hedonic games and fractional hedonic games have received considerable attention. They are coalition forming games of selfish agents based on their mutual preferences. Most of the work in the literature characterizes the existence and structure of stable outcomes (i.e., partitions in coalitions), assuming that preferences are given. However, there is little discussion on this assumption. In fact, agents receive different utilities if they belong to different partitions, and thus it is natural for them to declare their preferences strategically in order to maximize their benefit. In this paper we consider strategyproof mechanisms for additively separable hedonic games and fractional hedonic games, that is, partitioning methods without payments such that utility maximizing agents have no incentive to lie about their true preferences. We focus on social welfare maximization and provide several lower and upper bounds on the performance achievable by strategyproof mechanisms for general and specific additive functions. In most of the cases we provide tight or asymptotically tight results. All our mechanisms are simple and can be computed in polynomial time. Moreover, all the lower bounds are unconditional, that is, they do not rely on any computational or complexity assumptions

    Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon

    Get PDF
    The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si) and paracrystalline silicon (p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are found to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics calculations on a 216-atom model. The calculated decay rates for p-Si are similar to those of a-Si. No modes in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes with the largest (up to 59%) weight on the cluster decay primarily to two diffusons. The numerical results are discussed in relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62}, 8072 (2000)] that long vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure

    Constraints on Galaxy Bias, Matter Density, and Primordial Non--Gausianity from the PSCz Galaxy Redshift Survey

    Get PDF
    We compute the bispectrum for the \IRAS PSCz catalog and find that the galaxy distribution displays the characteristic signature of gravity. Assuming Gaussian initial conditions, we obtain galaxy biasing parameters 1/b1=1.200.19+0.181/b_1=1.20^{+0.18}_{-0.19} and b2/b12=0.42±0.19b_2/b_1^2=-0.42\pm0.19, with no sign of scale-dependent bias for k0.3k\leq 0.3 h/Mpc. These results impose stringent constraints on non-Gaussian initial conditions. For dimensional scaling models with χN2\chi^2_N statistics, we find N>49, which implies a constraint on primordial skewness B3<0.35B_3<0.35.Comment: 4 pages, 3 embedded figures, uses revtex style file, minor changes to reflect published versio

    Gentle Perturbations of the Free Bose Gas I

    Full text link
    It is demonstrated that the thermal structure of the noncritical free Bose Gas is completely described by certain periodic generalized Gaussian stochastic process or equivalently by certain periodic generalized Gaussian random field. Elementary properties of this Gaussian stochastic thermal structure have been established. Gentle perturbations of several types of the free thermal stochastic structure are studied. In particular new models of non-Gaussian thermal structures have been constructed and a new functional integral representation of the corresponding euclidean-time Green functions have been obtained rigorously.Comment: 51 pages, LaTeX fil

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde
    corecore