10,431 research outputs found
Linear semigroups with coarsely dense orbits
Let be a finitely generated abelian semigroup of invertible linear
operators on a finite dimensional real or complex vector space . We show
that every coarsely dense orbit of is actually dense in . More
generally, if the orbit contains a coarsely dense subset of some open cone
in then the closure of the orbit contains the closure of . In the
complex case the orbit is then actually dense in . For the real case we give
precise information about the possible cases for the closure of the orbit.Comment: We added comments and remarks at various places. 14 page
Enhanced Peculiar Velocities in Brane-Induced Gravity
The mounting evidence for anomalously large peculiar velocities in our
Universe presents a challenge for the LCDM paradigm. The recent estimates of
the large scale bulk flow by Watkins et al. are inconsistent at the nearly 3
sigma level with LCDM predictions. Meanwhile, Lee and Komatsu have recently
estimated that the occurrence of high-velocity merging systems such as the
Bullet Cluster (1E0657-57) is unlikely at a 6.5-5.8 sigma level, with an
estimated probability between 3.3x10^{-11} and 3.6x10^{-9} in LCDM cosmology.
We show that these anomalies are alleviated in a broad class of
infrared-modifed gravity theories, called brane-induced gravity, in which
gravity becomes higher-dimensional at ultra large distances. These theories
include additional scalar forces that enhance gravitational attraction and
therefore speed up structure formation at late times and on sufficiently large
scales. The peculiar velocities are enhanced by 24-34% compared to standard
gravity, with the maximal enhancement nearly consistent at the 2 sigma level
with bulk flow observations. The occurrence of the Bullet Cluster in these
theories is 10^4 times more probable than in LCDM cosmology.Comment: 15 pages, 6 figures. v2: added reference
Charge-exchange limits on low-energy α-particle fluxes in solar flares
This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Lyα line of He II at 304 Å, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary α particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon<sup>–1</sup>. We study 10 events in total, including the γ-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism
Dynamical Mass Generation of Composite Dirac Fermions and Fractional Quantum Hall Effects near Charge Neutrality in Graphene
We develop a composite Dirac fermion theory for the fractional quantum Hall
effects (QHE) near charge neutrality in graphene. We show that the interactions
between the composite Dirac fermions lead to dynamical mass generation through
exciton condensation. The four-fold spin-valley degeneracy is fully lifted due
to the mass generation and the exchange effects such that the odd-denominator
fractional QHE observed in the vicinity of charge neutrality can be understood
in terms of the integer QHE of the composite Dirac fermions. At the filling
factor , we show that the massive composite Dirac fermion liquid is
unstable against chiral p-wave pairing for weak Coulomb interactions and the
ground state is a paired nonabelian state described by the Moore-Read Pfaffian
in the long wavelength limit.Comment: Extended, published version, 9 pages, 3 figure
Strategyproof Mechanisms for Additively Separable Hedonic Games and Fractional Hedonic Games
Additively separable hedonic games and fractional hedonic games have received
considerable attention. They are coalition forming games of selfish agents
based on their mutual preferences. Most of the work in the literature
characterizes the existence and structure of stable outcomes (i.e., partitions
in coalitions), assuming that preferences are given. However, there is little
discussion on this assumption. In fact, agents receive different utilities if
they belong to different partitions, and thus it is natural for them to declare
their preferences strategically in order to maximize their benefit. In this
paper we consider strategyproof mechanisms for additively separable hedonic
games and fractional hedonic games, that is, partitioning methods without
payments such that utility maximizing agents have no incentive to lie about
their true preferences. We focus on social welfare maximization and provide
several lower and upper bounds on the performance achievable by strategyproof
mechanisms for general and specific additive functions. In most of the cases we
provide tight or asymptotically tight results. All our mechanisms are simple
and can be computed in polynomial time. Moreover, all the lower bounds are
unconditional, that is, they do not rely on any computational or complexity
assumptions
Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon
The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si)
and paracrystalline silicon (p-Si), containing small crystalline grains
embedded in a disordered matrix, are calculated using realistic structural
models. The models are 1000-atom four-coordinated networks relaxed to a local
minimum of the Stillinger-Weber interatomic potential. The vibrational decay
rates are calculated numerically by perturbation theory, taking into account
cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are
found to be on picosecond time scales, in agreement with the previous
perturbative and classical molecular dynamics calculations on a 216-atom model.
The calculated decay rates for p-Si are similar to those of a-Si. No modes in
p-Si reside entirely on the crystalline cluster, decoupled from the amorphous
matrix. The localized modes with the largest (up to 59%) weight on the cluster
decay primarily to two diffusons. The numerical results are discussed in
relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62},
8072 (2000)] that long vibrational relaxation inferred experimentally may be
due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure
Constraints on Galaxy Bias, Matter Density, and Primordial Non--Gausianity from the PSCz Galaxy Redshift Survey
We compute the bispectrum for the \IRAS PSCz catalog and find that the galaxy
distribution displays the characteristic signature of gravity. Assuming
Gaussian initial conditions, we obtain galaxy biasing parameters
and , with no sign of
scale-dependent bias for h/Mpc. These results impose stringent
constraints on non-Gaussian initial conditions. For dimensional scaling models
with statistics, we find N>49, which implies a constraint on
primordial skewness .Comment: 4 pages, 3 embedded figures, uses revtex style file, minor changes to
reflect published versio
Gentle Perturbations of the Free Bose Gas I
It is demonstrated that the thermal structure of the noncritical free Bose
Gas is completely described by certain periodic generalized Gaussian stochastic
process or equivalently by certain periodic generalized Gaussian random field.
Elementary properties of this Gaussian stochastic thermal structure have been
established. Gentle perturbations of several types of the free thermal
stochastic structure are studied. In particular new models of non-Gaussian
thermal structures have been constructed and a new functional integral
representation of the corresponding euclidean-time Green functions have been
obtained rigorously.Comment: 51 pages, LaTeX fil
The IR-Completion of Gravity: What happens at Hubble Scales?
We have recently proposed an "Ultra-Strong" version of the Equivalence
Principle (EP) that is not satisfied by standard semiclassical gravity. In the
theory that we are conjecturing, the vacuum expectation value of the (bare)
energy momentum tensor is exactly the same as in flat space: quartically
divergent with the cut-off and with no spacetime dependent (subleading) ter ms.
The presence of such terms seems in fact related to some known difficulties,
such as the black hole information loss and the cosmological constant problem.
Since the terms that we want to get rid of are subleading in the high-momentum
expansion, we attempt to explore the conjectured theory by "IR-completing" GR.
We consider a scalar field in a flat FRW Universe and isolate the first
IR-correction to its Fourier modes operators that kills the quadratic (next to
leading) time dependent divergence of the stress energy tensor VEV. Analogously
to other modifications of field operators that have been proposed in the
literature (typically in the UV), the present approach seems to suggest a
breakdown (here, in the IR, at large distances) of the metric manifold
description. We show that corrections to GR are in fact very tiny, become
effective at distances comparable to the inverse curvature and do not contain
any adjustable parameter. Finally, we derive some cosmological implications. By
studying the consistency of the canonical commutation relations, we infer a
correction to the distance between two comoving observers, which grows as the
scale factor only when small compared to the Hubble length, but gets relevant
corrections otherwise. The corrections to cosmological distance measures are
also calculable and, for a spatially flat matter dominated Universe, go in the
direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde
- …