21 research outputs found

    Phosphorus bioavailability in soil profiles of a long-term fertilizer experiment: The evaluation of their bioaccessibility

    Get PDF
    Global agricultural productivity depends on the use of finite phosphorus (P) resources of which not only the topsoil, but also subsoil, can hold immense reserves. To assess potential soil contribution to plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications (control, triple superphosphate (TSP), compost, compost+TSP) for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify the chemical P speciation. Fertilized topsoils (21 to 69 kg P ha-1 a-1) showed P reserves larger by a factor of 1.2 to 1.4, and subsoil P reserves larger by a factor of 1.3 to 1.5 than those of the control. P-XANES revealed the predominance of inorganic P species such as moderately labile Fe- (46 to 92%), Al- (0 to 40%), and Ca- (0 to 15%) P compounds besides organic P (0 to 13%) in all treatments. The fertilizer application slightly altered P speciation throughout the profiles, but the type of fertilizer had no significant effect on it. Optimal plant growth requirements are restricted by the exchangeable P from the solid phase within the soil solution. Therefore, ongoing research focuses on the accessibility of P from P loaded amorphous Fe- and Al-hydroxides, previously identified as the predominant abiotic P forms. To assess their P desorption potential, P-33 rhizotron experiments combined with P-33 isotopic exchange kinetics (IEK) are underway. Preliminary results indicated that besides differences in P binding capacity of soil hydroxides, physical soil parameters, such as the matric potential, strongly control soil P availability, thus plant P acquisition rates can vary among different soil types. Our results gained new detailed information about P bioavailability under agricultural practice. The investigations towards P bioaccessibility may contribute to improved interpretation of soil P tests and reduced fertilizer recommendations

    Phosphorus availability in soil profiles of long-term fertilizer experiments: An evaluation of P accessibility

    No full text
    Global agricultural productivity depends on the use of finite phosphorus (P) resources of which not only the topsoil, but also subsoil, can hold immense reserves. To assess potential soil contribution to plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications (control, triple superphosphate (TSP), compost, compost+TSP) for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify the chemical P speciation. Fertilized topsoils (21 to 69 kg P ha-1a-1) showed P reserves larger by a factor of 1.2 to 1.4, and subsoil P reserves larger by a factor of 1.3 to 1.5 than those of the control. P-XANES revealed the predominance of inorganic P species such as moderately labile Fe- (46 to 92%), Al- (0 to 40%), and Ca- (0 to 15%) P compounds besides organic P (0 to 13%) in all treatments. The fertilizer application slightly altered P speciation throughout the profiles, but the type of fertilizer had no significant effect on it. Optimal plant growth requirements are restricted by the exchangeable P from solid phases within the soil solution. Therefore, ongoing research focuses on the accessibility of P from P loaded amorphous Fe- and Al-hydroxides, previously identified as the predominant abiotic P forms. To assess their P desorption potential, 33P rhizotron experiments combinedwith 33P isotopic exchange kinetics (IEK) are underway. Preliminary results indicated that besides differences in P binding capacity of soil hydroxides, physical soil parameters, such as the matric potential, strongly control soil P availability, thus plant P acquisition rates can vary among different soil types. Our results gained new detailed information about P bioavailability under agricultural practice. The investigations towards P bioaccessibility may contribute to improved interpretation of soil P tests and reduced fertilizer recommendations

    Study of the formation of acid‐based geopolymer networks and their resistance to water by time/temperature treatments

    No full text
    International audienceAcid-based geopolymers are known for their high temperature resistance and good mechanical performances. Some compositions also exhibit water resistance, which make them suitable for outdoor applications. This work aims to understand accurately the steps occurring during the geopolymerization process, and focuses on the type of networks forming at early stages of the reaction. The sample, prepared from metakaolin and phosphoric acid, has been analyzed at different durations and temperatures during its solidification, in order to identify which compounds would crystallize. The structural characterizations have been performed using Fourier Transform InfraRed spectroscopy and X-Ray diffraction. Several Al-O-P compounds and especially AlPO4 polymorphs crystallize in these conditions. They belong to three families of aluminophosphates, and are a reliable indication of the amorphous organization of the original sample. The first one is similar to the phases that appear in the phase transition sequences of silica, the second one is composed of AlPO4-based zeolites, and the last one is characterized by the presence of aluminum in an octahedral network. The transitions between the different phases are also discussed. Finally, the water resistance of the calcined samples is improved, and the release of acidic species in the water is limited even after a calcination at low temperature
    corecore